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Preface

Workshop on Physics and Computation
Egypt, August 30–September 6 2010

The third International Workshop on Physics and Computation (P&C
2010) was organised by University of Alexandria (Egypt), University of
Auckland (New Zealand), University of Azores (Portugal), Technical Uni-
versity of Lisbon (Portugal), and Technische Universität Wien (Austria).
The venue was held in a cruise downstream and upstream the Nile river
(Egypt), from Luxor (through Aswan) to Luxor.

This meeting is the third of the (re-inaugurating) series of workshops
on Physics and Computation. The first two meetings were satellite events
in Unconventional Computation conferences, respectively, in 2008 at Uni-
versity of Vienna (Austria) and in 2009 at University of Azores (Portugal).
These meetings were becoming an annual event to promote interdisciplinary
research in the fields of Physics and Computation. The series is coordinated
by the Steering Committee: Časlav Brukner (University of Vienna), Cris-
tian Calude, (University of Auckland), Gregory Chaitin (IBM’s Thomas J.
Watson Research Center), José Félix Costa (Technical University of Lis-
bon), István Németi (Hungarian Academy of Sciences).

P&C 2010 was based on tutorials, invited speakers, a special session,
contributed papers, and informal presentations. The main topics covered
were: analogue computation, axiomatization of physics (completeness, de-
cidability, reduction), Church-Turing thesis, computing beyond the Turing
barrier, digital physics, philosophy of physics (and computation), quan-
tum computation (digital, analogue) and applications to Biology, quantum
logics, reaction-diffusion models of computation (brain dynamics, BZ com-
puters), relativity (spacetimes, computation, time travel, speedup), theory
of measurement (axiomatization, complexity).

The present volume is the pre-proceedings and contains the abstracts
and papers of the two tutorials, six invited speakers, two special session
talks, seventeen contributed papers, and four informal presentations. There
will be post-proceedings publications, including special issues of the Jour-
nals Applied Mathematics and Computation and International Journal of
Unconventional Computing.

The two tutorial speakers were Gergely Székely and Marco Lanzagorta.
The invited speakers were Samson Abramsky, Arturo Carsetti, John Case,
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Gilles Dowek, Sonja Smets, and Salvador Venegas-Andraca, who gave talks
about Categorial Foundations of Computer Science and Physics, Philosophy
of Science, Learning Theory, CT Thesis, Quantum Logic, and Quantum
computation. The special session, devoted to 2010: The wakening of the
computer; Which technological realizations make us feel closer to the HAL
9000 Computer?, included two invited talks given by Selmer Bringsjord and
David Stork.

The Program Committee was composed by: Andrew Adamatzky (Uni-
versity of West England), Selim Akl (Queen’s University, Canada), Haj-
nal Andreka (Alfréd Rényi Institute of Mathematics, Budapest), Edwin
Beggs (University of Swansea), Olivier Bournez (École Polytechnique), Dan
Browne (University College London), Cristian Calude (University of Auck-
land, New Zealand), Arturo Carsetti (University of Rome “Tor Vergata”),
Barry Cooper (University of Leeds), Bob Coecke (University of Oxford),
José Félix Costa (Technical University of Lisbon), Gilles Dowek (École
Polytechnique and INRIA), Walid Gomaa (University of Alexandria), Viv
Kendon (University of Leeds), Carlos Loureno (University of Lisbon), Ju-
dit Madarász (Alfréd Rényi Institute of Mathematics, Budapest), Yasser
Omar (Technical University of Lisbon), Sonja Smets (University of Gronin-
gen , Netherlands), Mike Stannett (University of Sheffield), Karl Svozil
(Technische Universität Wien), John V. Tucker (University of Swansea),
Jiri Wiedermann (Academy of Sciences of the Czech Republic), Karoline
Wiesner (University of Bristol), and Martin Ziegler (University of Pader-
born, Germany).

The organization of the event was due to : Cristian Calude (University of
Auckland) José Félix Costa (Technical University of Lisbon), Walid Gomaa
(University of Alexandria), Hélia Guerra (University of Azores), and Karl
Svozil (Technische Universität Wien).

The workshop was partially supported by University of Azores, Centro
de Matemática e Aplicações Fundamentais (University of Lisbon), Centre
for Discrete Mathematics and Theoretical Computer Science (University of
Aukland), Springer, and the Touring Club of Egypt.

August 2010
Hélia Guerra

CMATI
University of Azores
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Relational Hidden Variables and Non-Locality

Samson Abramsky

Oxford University Computing Laboratory

Abstract. We use a simple relational framework to develop the key
notions and results on hidden variables and non-locality. The extensive
literature on these topics in the foundations of quantum mechanics is
couched in terms of probabilistic models, and properties such as locality
and no-signalling are formulated probabilistically. We show that to a
remarkable extent, the main structure of the theory, through the major
No-Go theorems and beyond, survives intact under the replacement of
probability distributions by mere relations. In particular, probabilistic
notions of independence are replaced by purely logical ones.
We also study the relationships between quantum systems, probabilistic
models and relational models. Probabilistic models can be reduced to
relational ones by the ‘possibilistic collapse’, in which non-zero proba-
bilities are conflated to (possible) truth. We show that all the indepen-
dence properties we study are preserved by the possibilistic collapse, in
the sense that if the property in its probabilistic form is satisfied by
the probabilistic model, then the relational version of the property will
be satisfied by its possibilistic collapse. More surprisingly, we also show
a lifting property : if a relational model satisfies one of the independence
properties, then there is a probabilistic model whose possibilistic collapse
gives rise to the relational model, and which satisfies the probabilistic
version of the property. These probabilistic models are constructed in a
canonical fashion by a form of maximal entropy or indifference principle.
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The Emergence of Meaning at the Co-Evolutive
Level – An Epistemological Approach

Arturo Carsetti

University of Rome “Tor Vergata”

From a general point of view, we can affirm, according to Kauffman’s main
thesis, that the transition between order and chaos appears as an attractor for
the evolutionary dynamics of networks which exhibit adaptation. The study of
neural networks shows that such nets are reasonable (even if limited) mathe-
matical models of a large class of non-linear dynamical system. The attractors
of these networks can “simulate” natural object of interest. From a biological
point of view, we can interpret, for instance, these attractors as cell types. From
a cognitive point of view, we can interpret these very attractors as the natural
classification that a specific network makes of the external world.

These findings represent a conservative widening of some of the well establi-
shed achievements in the field of non-equilibrium thermodynamics. In particular,
it is important to remark, to this proposal, that this widening concerns, first of
all, the nature and the dynamics of the differentiation processes, the link, in
perspective, existing between these last processes and the successive formation
of particular basins of attraction. Actually, from Prigogine and Nicolis to Kauff-
man, we can perceive a coherent line of research based on the individuation
of the principles characterizing the chaotic dynamics and, from a more gene-
ral point of view, the nature of the intermediate state (the “aperiodic crystal”,
as Schrodinger called that particular intermediate state represented by DNA).
These principles make essential reference, according to a neodarwinian scheme,
to the existence of a precise “dialectics” between mutation, selection and diffe-
rentiation. They give a first characterization of this kind of dialectics utilizing,
in a creative way, the tools offered by contemporary complexity theory.

But we may wonder : even if this scheme is plausibly partially correct, is it
also “true” ? Is it possible to explain the whole complexity of the self-organizing
(living) processes within a general markovian frame even if enlarged by taking
into consideration the role of natural selection and of the process of differentia-
tion ? Does a logical level of explanation exist within which the self-organization
processes and the dialectics between surface information and depth information
(as it progressively develops in dependence of the observation activities) can
play a determinant role, beside the classical factors represented by chance and
necessity ? Certainly the selection rewards the flexibility and the supply of va-
riability ; why, however, does the evolution appear to reward the supply not of
a purely stochastic variability, but of a varied and articulated complexity and,
consequently, of a constrained complexity ? As Atlan correctly remarks (1), in a
natural self-organizing system (a biological one) the goal has not been set from
the outside. What is self-organizing is the function itself with its meaning. The
origin of meaning in the organization of the system is an emergent property.
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Moreover, the origin of meaning is strictly connected to precise operations of
observation and self-observation.

If we take into consideration, for instance, the afore mentioned “aperiodic
crystal” we know that DNA appears as the receptacle of an information” pro-
grammed” by natural selection. It becomes embodied, along the successive ex-
pression of the laws of the “inscription”, in the cellular growth that is taking
place according to the constraints imposed by the selection performed within an
ambient meaning and by the bricolage operated with respect to the preexisting
structures. It is along this peculiar channel that the flux of deep information
may, therefore, express itself and articulate, in a creative way, its original incom-
pressibility according to the correlated emergence of different stages of functional
construction. In this sense the DNA must be seen neither as a program nor as a
set of “data”. It appears, on the contrary, to be a source and a “model”. Both the
interpretation function and the representation apparatus concerning that parti-
cular cellular machinery represented by the activity of proteins make essential
reference to this kind of model. We are effectively in front of a complex cellular
(and parallel) developmental “network” within which we can individuate, first
of all, the presence of a specific process of “inscription” as well as of an inter-
pretation function operating at the level of surface representation. This network
is open to the flux of deep information and results constrained by the selective
pressures acting within an ambient meaning. The role of the attractors takes
place in the background of this intricate series of processes ; it cannot concern
only a component of the cycle of the metamorphosis.

The genome expresses itself into a given phenotype in a complex way. Ac-
tually, the genetic code codes for its own translating machinery, it determines
the birth of a cellular machinery responsible, in turn, for gene regulation and
expression. This cellular machinery “represents”, step by step, the genome into
an organism realizing a specific embodiment process. In this sense, the genome
and the cellular machinery really interact establishing an evolving and coupled
network : as we shall see, one of the key results of this interaction is represented
by the continuous engraving (through selection) at the level of the organisms of
specific formats : among them we can distinguish, first of all, the formats relative
to the architectures of sensorial perception.

The genome determining the expression of a cellular machinery, determines
the birth both of an apparatus and of a surface program “embedded” in that
apparatus. As a matter of fact, the apparatus doesn’t appear to be an interpreter
with a given program, it appears rather as a parallel computing system (wor-
king at the surface level) with a precise evolving internal dynamics, a system
able, moreover, to represent and reflect itself (and express, still within itself, its
own truth predicate). The program “embedded” in this apparatus concerns the
general frame of the connections and constraints progressively arising, its exclu-
sive capacity to express (and canalize by forms) a specific coordination activity
within the boundaries of the becoming net. This capacity, on the other hand,
can be “crystallized” on the basis of specific operations of self-representation
and abstraction, so that it can be, finally, seen as the very “image” of the em-

3



bodied programs (forms in action) through which the apparatus progressively
self-organizes expressing its autonomy. Through this image it is possible for the
system to recognize the secret paths of the intentional information characterizing
its intrinsic development, as programmed by natural selection. The final result is
a source that assumes a reproductive capacity commensurate with a precise inva-
riance and with the constitution of intrinsic forms which inhabit life ; it inscribes
itself as form and as an hereditary principle in action, as a source of varied
complexity but compared with a hereditary apparatus which self-organizes as
such in view of possible regeneration. The source which generates on the basis
of self-reflection opens out, then, towards a self-reproduction process which is
targeted and part of a co-evolutionary path. The telos has to fix and be fixed in
a “mask” to allow the source to burst out and become form in action, to express
itself by means of living and moving forms : hence a source that reveals itself as
both productive and intentional, which rejects simple dissipation and progres-
sively constructs starting from itself “strange objects” (according to Monod’s
definition) (2).

It is precisely with reference to this apparatus and to this embedded “pro-
gram” that the genome acts as a model. A model that must not be considered
only from a logical and semantical point of view (in a denotational sense), but
also from a biological and functional point of view. As a model, that is, conside-
red as acting information + intentionality. If we aim, for instance, to describe the
functional nature of this particular model as well as of the link existing at the
biological level between form and information, the resolution, however, of at least
of three orders of problems results indispensable : 1) the outlining of a statisti-
cal mechanics at the biological level concerning genes and macromolecules and
no more only atoms and molecules, able, moreover, to take into consideration
the role of the self-organization forces ; 2) the outlining of a semantic informa-
tion theory taking into consideration the concept of observational meaning : the
meaning as connected, at the same time, to a process, to an observer and to a
hierarchical representation ; 3) the outlining of new measures with respect to the
very concept of biological information. We need measures capable of taking into
the consideration the growth processes, the statistical fluctuations living at the
microscopic level etc. The Shannonian measure concerns essentially stationary
processes articulating in a one-dimensional landscape.

The model is the “temporary” receptacle of the biological functions and of
the replicative life ; in particular, it appears, as we have just said, as the recep-
tacle of an information programmed by natural selection. The genome, in other
words, is a model for a series of biological actions and symmetry breakings, for
the realization of a complex path whose goal is represented by the attainment,
on behalf of the apparatus, of a sufficiently complete functional autonomy at the
surface level (within a dynamic ambient meaning). The interpretation function
relative to this kind of model appears to concern, therefore, the actual realization
of the embodiment process. In this sense, as Maynard Smith correctly remarks
(3), a DNA molecule has a particular sequence because it specifies a particular
protein : it contains information concerning proteins and specifies a form that
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articulates as synthesis in action. DNA and (regulatory) proteins carry instruc-
tions for the development of the organism ; in particular genomic information is
meaningful in that it generates an organism able to survive in the environment
in which selection has acted. In turn, the organisms act as vehicles capable of
permitting the source the successive realization of its own “renewal”. The source
“channels” itself through the telos finally articulating as a model : we are really
faced with an intentional information at work.

The coder imparting intentionality allows the information to be articulated
as semantic, to be immersed in the meaning (i. e., to sanction the birth of an
apparatus able to see according to the truth). Thus, the source will manage to
code because the telos was able to “follow” the meaning in an adequate way.
The DNA can constitute itself as model only via the embodiment process, in this
sense the model at work necessarily reveals itself as intentional (self-organizing,
in perspective, as a possible biological basis of a specific cognitive activity).
Hence a source that through the via manages to code and perceive according to
the truth but with respect to the progressive articulation and the “adjunction”
of specific observers that inhabit the Natura naturata. Then, it will be possible
the rising of a new “conception” at the level of the effective closure of operant
meaning. The source that posits itself as model renders itself to the life ; on the
other hand, the progressive realization of the embodiment, of an apparatus able
to feed meaning, corresponds to the coding in action. Only the telos capable of
reflecting itself into the truth will be able to offer the source real intentionality :
hence the arising circularity between form and information.

From an objective point of view, the inscription process possesses a self-
limiting character with respect to the infinite potentialities of expression which
are present in the source. Moreover the model, at the beginning, is “blind”.
In order to become a suitable channel for the successive revelation of the deep
information living in the source, the model must not replicate simply itself :
it has also to utilize the tools of the replication and the dissipation in order to
realize a representation process possibly capable of allowing the source to express
its inner creativity in a new and more complex way. It necessarily self-organizes
within an ambient meaning on the basis of telos’ activity.

From an informational point of view, life can be characterised in terms of
a concrete answer to three difficult questions : “how is information genera-
ted ?”, “how is information transmitted ?” and “how is information assimila-
ted ?”. With respect to this last interrogative, we have immediately to realise
that the assimilation-process of external information implies the existence of
specific forms of determination at the neural level as well as the continuous de-
velopment of a specific cognitive synthesis. Actually, information relative to the
system stimulus is not a simple amount of neutral sense-data to be ordered, it
is linked to the “unfolding” of the selective action proper to the optical sieve,
it articulates through the imposition of a whole web of constraints, possibly
determining alternative channels at the level, for example, of internal trajec-
tories. Depth information grafts itself on (and is triggered by) recurrent cycles
of a self-organising activity characterised by the formation and the continuous
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compositio of multi-level attractors. The possibility of the development of new
systems of pattern recognition, of new modules of reading will depend on the
extent to which new successful “garlands” of the functional patterns presented
by the optical sieve are established at the neural level in an adequate way. The
aforementioned self-organising activity thus constitutes the real support for the
effective emergence of an autonomous cognitive system and its consciousness.
Insofar as an “I” manages to close the “garlands” successfully, in accordance
with the successive identification of specific attractors and the actual interven-
tion of meaning selection, thereby harmonising with the ongoing “multiplica-
tion” of mental processes at the visual level, it can posit itself as an adequate
grid-instrument for the “vision-reflection” on behalf of the original Source of
itself, for its self-generating and “reflecting” as Natura naturata, a Nature which
the very units (monads) of multiplication will actually be able to read and see
through the eyes of the mind. Here we can recognize the ultimate roots of a true
self-organising process articulating at the cognitive level.

If we take into consideration, for instance, visual cognition we can easily rea-
lise that vision is the end result of a construction realised in the conditions of
experience. It is “direct” and organic in nature because the product of neither
simple mental associations nor reversible reasoning, but, primarily, the “har-
monic” and targeted articulation of specific attractors at different embedded
levels. The resulting texture is experienced at the conscious level by means of
self-reflection ; we actually sense that it cannot be reduced to anything else,
but is primary and self-constituting. We see visual objects ; they have no in-
dependent existence in themselves but cannot be broken down into elementary
data. Grasping the information at the visual level means managing to hear, as
it were, inner speech. It means first of all capturing and “playing” each time,
in an inner generative language, through progressive assimilation, selection and
real metamorphosis (albeit partially and roughly) and according to “genealogi-
cal” modules, the articulation of the complex semantic grid which works at the
deep level and moulds and subtends, in a mediate way, the presentation of the
functional patterns at the level of the optical sieve.

Vision as emergence aims first of all to grasp (and “play”) the paths and
the modalities that determine the selective action, the modalities specifically
relative to the revelation (and the construction) of this semantic “apparatus”
at the surface level according to different and successive phases of generality.
These paths and modalities thus manage to “speak” through my own fibres. It
is exactly through a similar self-organizing process, characterised by the presence
of a double-selection mechanism (i. e., by the correlated action of two different
selective forces : the force linked to the full expression of the original incompres-
sibility, on the one hand, and the force linked to the selective activity performed
within an ambient meaning, on the other hand) that the mind can partially
manage to perceive (and assimilate) depth information in an objective way. The
extent to which the system-model succeeds, albeit partially, in encapsulating
the secret cipher of this articulation through a specific chain of programs de-
termines the model’s ability to see (at the cognitive level) with the eyes of the
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mind as well as the successive irruption of new patterns of creativity. To assi-
milate and see, the system must first “think” internally of the secret structures
of the possible, and then posit itself as a channel (through the precise indica-
tion of forms of potential coagulum) for the process of opening and anchoring
of depth information. This process then works itself gradually into the system’s
fibres, via possible selection, in accordance with the coagulum possibilities and
the meaningful connections offered successively by the system itself.

The revelation and channelling procedures thus emerge as an essential and
integrant part of a larger and coupled process of self-organization. In connec-
tion with this process we can ascertain the successive edification of an I-subject
conceived as a progressively wrought work of abstraction, unification, and emer-
gence. The fixed points which manage to articulate themselves within this chan-
nel, at the level of the trajectories of neural dynamics, represent the real bases
on which the “I” can graft and progressively constitute itself. The I-subject can
thus perceive to the extent in which the single visual perceptions are the end
result of a coupled process which, through selection, finally leads the original
Source to articulate and present itself as true invariance and as “harmony” wi-
thin (and through) the architectures of reflection, imagination, computation and
vision, at the level of the effective constitution of a body and “its” intelligence :
the body of “my” mind. These perceptions are (partially) veridical, direct, and
irreducible. They exist not in themselves, but, on the contrary, for the “I”, but
simultaneously constitute the primary departure-point for every successive form
of reasoning perpetrated by the observer. As an observer I shall thus witness
Natura naturata since I have connected functional forms at the semantic level
according to a successful and coherent “score”.

In accordance with these intuitions, we may tentatively consider, from the
more general point of view of contemporary Self-organization theory, the net-
work of meaningful (and “intelligent”) causal “programs” living at the level of
our body as a complex one which forms, articulates, and develops, functionally,
within a “coupled universe” characterised by the presence of the afore mentioned
double-selection mechanism. This network gradually posits itself as the real ins-
trument for the actual emergence of meaning and the simultaneous, if indirect,
surfacing of an “observing (and acting) I” : as the basic instrument, in other
words, for the perception of real and meaningful processes, of strange “objects”
possessing meaning, aims, intentions, etc. : above all, of objects possessing an
inner plan and linked to the progressive expression of a specific cognitive action.

The mind considered as an intelligent “network” which develops with its
meaning articulates as a growing neuronal system-model through which conti-
nuous restructuring processes are effected at a holistic level, thus constituting
the indispensable basis of cognitive activity. The process is first of all, as stated
above, one of canalization and revelation (in primis according to specific re-
flection procedures) of precise informational (and generative) fluxes-principles.
It will necessarily articulate through schemata and attractors which will stabi-
lise within circuits and flux determinations. In this sense the mind progressively
constitutes itself as a self-organizing observing device in the world and of the
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world. When, therefore, the system-model posits itself as an ‘I-representation’
(when the arch of canalization reaches “completion”), and observes the world-
Nature before it, it “sees” (and computes) the world in consonance with the
functional operations on which its realization was based, i.e. according to the ar-
chitecture proper to the circuits and the patterns of meaning which managed to
become established. The result is Nature written in mathematical formulae : Na-
ture read and seen iuxta propria principia as a great book (library) of functional
and operational forms by means of symbolic characters, grammatical patterns
and specific mathematical modules.

From a general point of view, at the level of the articulation of visual cog-
nition, we are actually faced with the existence of precise forms of co-evolution.
With respect to this dynamic context, we can recognize, at the level of the
aforementioned process of inventive canalisation, not only the presence of mo-
dules of self-reflection but also the progressive unfolding of specific fusion and
integration functions. We also find that the Sinn that embodies in specific and
articulated rational intuitions guides and shapes the paths of the exploration
selectively. It appears to determine, in particular, by means of the definition of
precise constraints, the choice of a number of privileged patterns of functional
dependencies with respect to the entire relational growth. As a result, we are
able to inspect a precise spreading of the development dimensions, a selective
cancellation of relations and the rising of specific differentiation process. Thus,
we are faced with a new theoretical landscape characterized by the successive
unfolding (in a co-evolutive context) of specific mental processes submitted to
the action of well-defined selective pressures and to a continuous emergence of
depth information. In this sense, this emergence reveals itself as canalized by
means of the action of precise constraints that represent the end product of the
successive transformation of the original gestalten. Actually, the gestalten can
“shape” the perceptual space according to a visual order only insofar as they
manage to act (on the basis of the metamorphosis undergone at the teleonomical
level) as constraints concerning the generative (and selective) processes at work.

The gestalten constitute first of all the natural forms through which meaning
can be enclosed (i.e., realizing its thread-like extension) and can modulate its
action along the ramparts of its surface “captivity”. In this sense, they deter-
mine at a primary level the gradual shaping of the structures of the “I” which
cannot help but think through forms if it is to self-organize as an ongoing process
of vision : if it wishes to perceive veridically, and ultimately posit itself as the
fixed point for the process of vision (including, Husserl would add, the vision of
the categories themselves). Actually, the source attains its own invariance not
because it reflects a given, fixed order (an order that, in the background of the
dissipation process, could only present itself as the order or law of Chance),
but because it succeeds in individuating, each time, the necessary tools for its
representation at a surface level so that new levels of the deep incompressibi-
lity can, finally, express and inscribe themselves as new functional (and living)
forms. These forms will represent the “intentional” stakes able to support the
real embodiment of the capacity of creative replication of the source, the new
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“moments” of a Time considered, contemporarily, both as creation and as reco-
very. Thus, life and cognition appear as indissolubly intertwined (4).

According to this frame of reference and from a mathematical point of view,
true cognition appears as constrained by the continuous reference to a number of
specific analytical tools : computability and the Turing universe, incompressibi-
lity and the oracles in action, self-organising nets, deterministic chaos, non-linear
mathematics, second-order structures and so on. With respect to this particular
framework, the simulation activity, the construction, for instance, of an adequate
semantics for natural language, presents itself as a form of interactive knowledge
of the complex chain of biological realizations through which Nature reveals it-
self to our brains in a consistent way (by means, for example, of the intelligent
design of specific experiments at the level of an extended Turing universe). To
simulate, in this sense, is not only a form of self-reflection or a kind of simple
recovery performed by a complex cognitive net in order to represent itself at the
surface level and “join” the government in action. The simulation work, in effect,
offers the semantic net real instruments in order to perform a self-description
process and to outline specific procedures of control as well as a possible map
of an entire series of imagination (and invention) paths. The progressive (and
selective) exploration of these paths will allow, then, external information to ca-
nalise in an emergent way, and to exploit new and even more complex patterns of
interactive expression and action. It is exactly the framing of this particular kind
of laboratory of possible emergence that will assure the successive revelation of
ever new portions of deep information : that particular “irruption” of the Other
(the renewed Source) which can express itself only within those particular fibres
of the simulation and within that variant geometrical tissue of the “modules”
which characterise, in an ultimate way, at the symbolic level, the cognitive acti-
vity of the subject. With respect to this epistemological setting, we are no longer
only faced with an observation activity that manages to identify itself as vision
according to the truth but also with a simulation activity and a metamorphosis
of meaning which express themselves by means of use and interaction, by the
continuous surfacing of new forms of productivity. When we pass from a world
of objects to a world of constructions, we are no longer exclusively faced, for
instance, with boolean algebras, first-order structures and observational acts,
we are really in front of a dynamic and functional universe characterised by in-
ner circularity, by self-organisation and by the presence of specific categorisation
processes as well as of precise evolutive differentiation patterns. Moreover, at the
level of this particular world, as we have just said, the role played by meaning
is different ; meaning is now characterised in terms of a symbolic dynamics in
action and with reference to a precise simulation language. As a consequence
of this particular articulation, specific limitation facts can arise at the level of
the progressive unfolding of this very language. New theoretical perspectives will
reveal themselves with respect, in particular, to the inner self-organizing aspects
of the emerging structure and to the specific constitution of the individuals in-
habiting this very structure considered as individuals essentially characterized
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not directly in terms of their properties but primarily in terms of their relations
(and their secret “affordances” at the symbolic level).

In a self-organizing semantic net the successive bifurcations, the recurrent
delimitations, actually appear, as temporal and connected determinations of
meaning embodied streams. In this sense, such determinations (differently from
Hintikka’s appraisal of Kant’s primitive intuitions), appear to concern not the
(direct) successive presentation-construction of individuals, but the sudden re-
velation of patterns of constraints, the actual intervention of new clusters of
selective choices at the level of the informational fluxes. Hence the essential
link, in perspective, both with the contemporary definitions of complexity at the
second-order level, and with the revisitation of some Leibniz’s original intuitions
as recently suggested presented, for example, by G. Chaitin and B. Cooper (5).
In this sense, the aforesaid determinations of time articulate modulating them-
selves, in a recurrent way, as a tool for the further construction-unfolding of
the inner creativity proper to the Source, as a sort of arch and gridiron for the
construction (and the recovery) of the “Other” through the constraints of an
intended “sacrifice”.

In the light of these considerations, if we return now to the analysis of the
observational procedures (abandoning, for the moment, the investigation of the
simulative ones), the deep meaning appears first of all as relative to the action
performed by precise semantic fixed-points, to a manifold, in particular, of sub-
tended circumscription functions and to the progressive expression of specific
postulates. The fixed-points of the resulting dynamics represent the “true” reve-
lation of that specific tuning that characterizes and identifies the predicates and
the properties at work. Thus, at the monadic and polyadic level, we are obliged
to outline a new and specific kind of model : a self-organizing (and coupled)
structure not bound to sets and individuals, (with relative attributes) but to
generators and fluxes of tuned information. In this new theoretical framework,
the simple reference to possible worlds (as in Frege or Hintikka, for instance) in
order to take into account the structure of intensionality is no longer sufficient,
One has also to resort, in the first instance, to the dynamics of the constraints,
to the identification of the indices and of the recurrent paths of the informational
flow as well as of the role played by the observer, i. e. to the interplay existing
between intervening and change.

In order to refer these general ideas to the traditional realm of Information
Theory, let us simply remember that starting from the theory of constituents,
as introduced by Carnap, every consistent statement h of a specific and suitable
language can be represented in the form of a disjunction of some (maybe all)
of the constituents : h = Ci1 ∨ Ci2 ∨ . . . ∨ Ciw(h) where Ci1, Ci2,. . ., Ciw(h) is
a subset of the set of all the constituents. The set {i1, i2, .., iw(h) } is called
the index set of h, and denoted by I(h). The number w(h) is called the width of
h. Then, we can introduce the probabilities and from the probabilities we can
obtain measures of semantic information in the two ways given by (i) and (ii)
as outlined by Carnap (and Popper) : (i) inf(h) = ¬ log p(h) , (ii) cont(h) =
1 - p(h). However, when we abandon the monadic level things are different ; in
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particular, when we enter the polyadic realm and come to use, for instance, pri-
mitive binary relations, we are immediately faced with a series of choices (and
assumptions) which are relative to the structural properties of such relations.
As a consequence of the structural properties that characterize the dyadic predi-
cates (i.e. that such predicates possess in an exclusively conceptual way), some
specific conjunctions of these very predicates will be shown to be inconsistent.
In this particular case, an individual as well as being considered as a collection
of properties must also be defined as a chain or collection of relationships. This
means that what must be joined together will no longer consist of simple entities
or sets of properties but of configurations and graphs. Thus, the conjunction, at
the level of generators, should be realized respecting precise constraints which
are of a “geometric” nature, connected, in particular, to the successive gain of
configurations of “points-patches” which possess determined characteristics. The
role of compatibility factors becomes particularly essential. From here both the
birth of complex cancellation procedures and the introduction by construction
of new individuals, in a potentially unlimited way, arise. Likewise, we would
have, in a correlated way, the introduction of nested quantifiers. Thus, the role
played by meaning really assumes a specific and deep relevance. As a matter of
fact, at the level of this type of structure, we can individuate the existence of
an essential plot between the successive “presentation” of the constraints and
the action of the meaning postulates, on the one hand, and the articulated de-
sign of mutations, cancellations and contractions of the predicates-inputs that
characterize the higher layers of formal constructions, on the other. Hence the
birth of new (and specific) measures of semantic information : in actual fact, at
this level meaning can be expressed only by means of a specific intentional and
symbolic dynamics. As we have just said, the source that posits itself as model
renders itself to the life but necessarily in accordance with the truth. Only the
telos capable of reflecting itself into the truth will be able to offer the source
real intentionality. In this way precise forms of classification and therefore pre-
cise contexts of sense will appear ; specific intensional structures will begin to
emerge : in particular, intensional grammars defined with reference to orders-
spaces of higher level. From here comes the necessity of outlining, in the case of
dyadic structures (and, in general, in the case of second-order structures), the
sophisticated dynamism of a great book of Language that presents itself at the
level of the conscious representation, like an effective reality in action. A reality
which emerges, however, also through our thinking and which, at the same time,
determines, first of all at the genetic level, this same thinking.

As we have just said, the mechanism which “extracts” pure intuitions from
the underlying formal co-ordination activity, if parallel to the development of
the telos as coder, is necessarily linked to the emergence of new mathematical
moves at the level of the neural system’s cognitive elaboration, This consideration
inviting the revisiting of a number of Kantian hypotheses. It would appear, for
instance, to be necessary not only to reread Kant in an evolutionistic key (cf.,
e.g. K. Lorenz), but also with reference to other speculative themes like, for
instance, the indissoluble link existing between life and cognition and between
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chance and necessity. Taking into consideration coder’s action opens up a new
and different relationship with the processes of mathematical invention, making
it necessary, for example, to explore the second-order territories, the very realm
of non-standard mathematics as well as the dialectics between observer and
observed reality.

Pace Kant, at the level of a biological cognitive system sensibility is not a
simple interface between absolute

Chance and an invariant intellectual order. On the contrary, the reference
procedures, if successful, are able to modulate canalization and create the basis
for the appearance of ever-new frames of incompressibility through morphoge-
nesis. This is not a question of discovering and directly exploring (according, for
instance, to Putnam’s conception) new “territories”, but of offering ourselves as
the matrix and arch through which they can spring autonomously in accordance
with ever increasing levels of complexity. There is no casual autonomous pro-
cess already in existence, and no possible selection and synthesis activity via a
possible “remnant” through reference procedures considered as a form of simple
regimentation. These procedures are in actual fact functional to the construc-
tion and irruption of new incompressibility : meaning, as Forma formans, offers
the possibility of creating a holistic anchorage, and is exactly what allows the
categorial apparatus to emerge and act according to a coherent “arborization”.
The new invention, which is born then shapes and opens the (new) eyes of the
mind : I see as a mind because new meaning is able to articulate

and take root through me.

As J. Petitot correctly remarks, according to Kant the pure intuitions are :
� ‘abstraites de l’action même par laquelle l’esprit coordonne, selon des lois
permanentes, ses sensations (Dissertation, 177 ) ‘. Or, cette coordination est
elle-même innêe et fonctionne comme un fondement de l’acquisition �(6). In this
sense, the space appears as a format, the very basis of spatial intuition is innate ;
however at the biological level, as we have just said, what is innate is the re-
sult of an evolutive process and is “programmed” by natural selection. Natural
selection is the coder (once linked to the emergence of meaning) : at the same
time at the biological level this emergence process is indissolubly correlated to
the continuous construction of new formats in accordance with the unfolding of
ever new mathematics, a mathematics that necessarily moulds coder’s activity.
Hence the necessity of articulating and inventing a mathematics capable of en-
graving itself in an evolutive landscape. In this sense, for instance, the realms of
non standard models and non standard analysis represent, today, a fruitful pers-
pective in order to point out, in mathematical terms, some of the basic concepts
concerning the articulation of an adequate intentional information theory. This
individuation, on the other side, presents itself not only as an important theo-
retical achievement but also as one of the essential bases of our very evolution
as intelligent organisms.
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Notes

1) Cf. Atlan, H. (2000), “Self-organizing networks : weak, strong and inten-
tional, the role of their underdetermination” in A. Carsetti (ed.), Functio-
nal Models of Cognition, Dordrecht, Kluwer A. P.,127-143.

2) Cf. Carsetti, A. (2009), “Embodiment processes and intentional complexi-
ty”, La Nuova Critica, 53-54 :115-136

3) Cf. Maynard Smith, J. (2000), “The concept of information in Biology”,
Philosophy of Science, 67 : 177-194.

4) Cf. at this proposal : Carsetti, A. (1992), “Meaning and complexity : a
non-standard approach”, La Nuova Critica, 19-20 :109-126

5) Cf. at this proposal : Chaitin, G. (2009), “Leibniz, Complexity and Incom-
pleteness” and Cooper, B.S. (2009) “Incomputability, Emergence and the
Turing Universe” in A. Carsetti (ed.), Causality, Meaningful Complexity
and Embodied Cognition, Berlin, Springer, 127-135 and 136-155.

6) Cf. Petitot, J.(2008), Neurogéometrie de la vision, Paris, Les Editions de
l’Ecole Polytechnique,397.
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Abstract. It is argued that, scientific laws, including quantum mechani-
cal ones, can be considered algorithmic, that the expected behavior of the
world, if not its exact behavior, is algorithmic, that, then, communities
of human scientists over time have algorithmic expected behavior.
Some sample theorems about the boundaries of algorithmic scientific
inference are then presented and interpreted. There is some discussion
about (but there are not presentations of) succinct machine self-reference
proofs of these theorems and whether non-artifactual self-referential ex-
amples may exist in the world.
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1 Scientific Laws

Below we describe in Section 1.1 how and why we model scientific laws in terms
of algorithms, and, in Section 1.2, we provide important clarification with an
example from quantum mechanics.

1.1 Modeling Scientific Laws

In the 1970s, I was motivated to work on the Theory of Machine Inductive Infer-
ence, Putnam and Gold [41, 27, 42], thanks to the Blums’ assertion [2, Page 125]
just below.

Consider the physicist who looks for a law to explain a growing body
of physical data. His data consist of a set of pairs (x, y), where x de-
scribes a particular experiment, e.g., a high-energy physics experiment,
and y describes the results obtained, e.g., the particles produced and
their respective properties. The law he seeks is essentially an algorithm
for computing the function f(x) = y.

Such an algorithm is a predictive explanation, Case & Smith [15, 16]: if one
has the good fortune to have such an algorithm, one can use it to predict the
outcomes of the associated experiments.
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Importantly, a predictive explanation must provide its predictions algorith-
mically ! How else are we to get out the predictions — by magic? To be sure,
in, say, physics, the laws are typically not written down including how to ex-
tract algorithmically the predictions. That is implicit and may, in some cases,
be difficult. The techniques are essentially covered by computably axiomatizable
mathematics, algorithmic numerical techniques, etc. Of course physicists rarely
resort to axiom systems directly, but, when mathematics is formulated axiomat-
ically, one always sees a computably decidable set of axioms. How else could
formal proofs be checked, e.g., when they cite an axiom, — by magic? Of course
with a formal system having a computably decidable set of axioms, the set of
corresponding theorems forms a computably enumerable set.

1.2 A Quantum Mechanical Example

Here is the promised example chosen on purpose to be from quantum mechanics.
Essentially from Case, et al, [9, 8]:

x codes a particle diffraction experiment & f(x) the resultant probable
distribution (or interference pattern) on the other side of the diffraction
grating. Quantum theory provides deterministic, algorithmic extraction
of f(x) from x. A program for f is, then, a predictive explanation or law
for the set of such particle diffraction experiments.

The program/law in this case does not tell us deterministically where the
particles go. It tells us instead, deterministically, algorithmically, their statisti-
cally expected behavior ! In the case an interference pattern is generated from an
experiment x where multiple particles are sent through a diffraction grating, it
deterministically, algorithmically provides f(x) which can be, then, a depiction
of that interference pattern!

Again, for the reasons spelled out at the end of Section 1.1 just above, a
predictive explanation must provide its predictions algorithmically !

2 Data Types

In this section we indicate in detail how, without loss of generality, we can and
will treat the functions f such as those described above in Sections 1.1 and 1.2
just above.

A countable set is (by definition) one in 1-1 correspondence with (some ⊆)
N = {0, 1, 2, . . .}, the set of natural numbers.

My former student, Mark Fulk, [22] argued that the set of distinguishable
experiments one can actually do and record on a phenomenon is countable: lab
manuals can and do contain only finite notations, strings, and images from a
finite alphabet of symbols, including gray and color pixel values.

One does not record measurements such as arbitrary infinite-precision real
numbers of volts.
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Beautiful continuous-mathematics (featuring uncountable sets such as that
of the real numbers) is employed in physics many times to smooth out feasibly
some much too complicated discrete reality, e.g., a giant cloud of electrons.

Interestingly, Maddy [34] discusses the just prior paragraph, and provides a
pointer, [18, Pages 290, 326], to cases where a continuous approximation to a
discrete thermodynamic reality fails.

So, one of my working hypotheses is that reality is discrete. This is discussed
further early in Section 3.1 below. Of course continuous mathematics is, in many
cases, on a practical level, hard to replace.

In what follows, then, thanks to Gödel or code numbering an algorithmically
circumscribed countably infinite set of experiments and outcomes for some phe-
nomenon F , e.g., some well circumscribed particle diffraction phenomenon: we
imagine coding (algorithmically) the set of experiments associated with F onto
N and the possible outcomes into N, and we let the function f (associated with
phenomenon F ) map any experiment on phenomenon F with code # x, into the
code # y of the outcome of x on F : f(x) = y.

Hence, the type of our fs can and will be taken to be N→ N.

Also, since we seek algorithmic explanations for F , we can handle the cases
only where f is also computable.

N.B. Our above discussion does not yet take into account error bounds on
measurements, an important, crucial, practical consideration. For our approach,
we can just consider that the code numbers of experiments and outcomes, include
measurement error bounds.

3 Computability

In Section 3.1 just below is discussed my additional working hypothesis that the
expected behavior of reality is algorithmic.

Then in Section 3.2 further below we explain what this has to do with human
scientific endeavors.

Next, in Section 3.3, we consider objections based on apparent human cre-
ativity and free will.

3.1 Computability of Expected Reality

Researchers in the cellular automata approach to physics, e.g., [19, 36, 21, 51,
48, 35, 47, 33, 50, 49, 52, 55, 46, 20, 28], take seriously the idea that the universe,
including space and time, may well be discrete.1

In a discrete, random universe but with computable probability distributions
for its expected behaviors (e.g., a discrete, quantum mechanical universe with
such distributions — as, I believe, ours is), the expected behavior will still be

1 Here Feynman [19] is crucial, and Minsky [36] lays out the ideas of Ed Fredkin on
some of the different ways physical space could be discrete.

17



computable. It essentially follows from [17, 24, 25] that one can compile any al-
gorithm r having access to a random oracle, which oracle is subject to a com-
putable distribution, into a deterministic algorithm dr computing, in a sense, the
expected outputs of r.

Another working hypothesis of mine is, then, that the universe, besides being
discrete, is algorithmic as to its expected behaviors.

N.B. We humans may be too finite ever to figure out completely how to com-
pute the associated expected behaviors. But that’s just about human limitations.

3.2 Computable Expected Behavior of Science

We humans are components of the universe; hence, communities of scientists
over time must also have computable expected behavior !

Herein, then, we’ll model scientists (and communities thereof over time) as
algorithmic. Then we can have theorems about the boundaries of the (expected)
behavior of science!

Just as a conservation assumption from physics provides boundaries on and
insight into the physically possible, so too the computable expected behavior
assumption on scientific inference provides boundaries on and insight into what’s
possible with scientific inference.

In [8] I discuss related language learning examples for cognitive science (not
treated herein).

I invite physicists to explore the consequences for physics of our universe
having computable expected behaviors. I’d really like to see something come out
of that.

3.3 Creativity and Free Will

First we discuss creativity.
In a world with only computable expected behaviors, what about human

creativity? How does my somewhat mechanistic working hypothesis account for
the [5] unbidden images which occur to people and which lead to solutions of
difficult problems and/or works of great beauty and significance for the human
condition?

I argue [5] that humans are mostly not consciously aware of the brain pro-
cesses that invoke such insights; hence, we have the illusion they aren’t algorith-
mically produced. Our conscious thoughts are the mere tip of an iceberg.

Post [40] described as creative cases where algorithmic processes are algo-
rithmically transcended. His examples generalize a bit the algorithmic process
of Gödel [26] essentially for transforming an algorithm for deciding a set of “con-
sistent” axioms for an arithmetic into a corresponding Gödel sentence. Adding
(trivially algorithmically) that sentence to the axiom set provides the transcen-
dence.2

Next we discuss free will.

2 [8] briefly refutes the argument that Gödel’s process falsifies mechanism.
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Libet, et al, [32] found that particular, experimentally detectable unconscious
cerebral activity always strictly precedes conscious human experiences of will ing
to do something. This is somewhat suspicious methinks re the existence of human
free will.

Conway and Kochen interpret their (Strong) Free Will Theorem [12, 13] to
mean, if some human has free will (about setting the details of some quantum
mechanics experiment), then so do some particles.

They want to retain human free will, so they ascribe it to some particles too.
Of course, at least in the case of particles, they mean by it only non-determinism.

I’m inclined to see conscious free will as another one of many human illusions.
We may have some non-determinism, but our expected behavior does not.

4 Machine Inductive Inference

Next we begin to describe a model of scientific inference.

(0, f(0)), . . . , (t− 1, f(t− 1))
In−→ M

Out−→ pt

Above M is an algorithmic device receiving f ’s data points (t, f(t)), at
“times,” t = 0, 1, . . . . N.B. For simplicity herein we’ll restrict the order of
presentation of data from f to be in this order (this matters in some cases).

M ’s output above, having seen the data sequence

f [t]
def
= (0, f(0)), ..., (t− 1, f(t− 1)),

is pt, where pt is a program in some fixed, general programming system.3 We
write M(f [t]) = pt. N.B. For simplicity herein we’ll restrict outselves to the
case where M on f [t] does not go into an infinite loop never producing pt (this
matters in some cases).

Perhaps, if M is “clever” enough and f is associated with a phenomenon F
that is not too hard to figure out, eventually, i.e., for suitably large ts, the pts
may come usefully close to computing f . More on this topic, in Section 4.1 just
below where we begin to discuss in more detail what can be meant by successful
scientific inference.

Then, in Section 4.2, we provide with interpretations some sample theorems
about scientific inference.4 Near the end of Section 4.2, we segue into Section 4.3
which discusses machine self-reference techniques which can, many times, be used
to provide very succinct proofs, relevantly herein, of results regarding scientific
inference.

Lastly, in Section 4.4, is discussed, whether the self-referential examples em-
ployed might actually correspond to (non-artifactual) examples in the real world.

3 When t = 0, f [t] is the empty sequence.
4 [8] provides additional examples.
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4.1 Criteria of Success

Definition 1 (Success Criteria Exa) Suppose a ∈ (N ∪ {∗}). Suppose S is
a class of computable functions f . ‘Ex’ stands for ‘Explanatory.’ a stands for
anomaly.
S ∈ Exa iff there is a suitably clever M so that, for every f ∈ S, for some

associated t, M(f [t]) = M(f [t+ 1]) = · · · and M(f [t]) computes f — except at
up to a data points. Here, up to ∗ points means up to finitely many.

Informally, M witnesses that S ∈ Exa means, on any f ∈ S, M ’s output
programs on f , eventually settle down syntactically to a single program “for” f
which program has at most a anomalous predictions re values of f .

In science, we don’t know when (if ever) we begin to have predictive expla-
nations that are pretty good; we don’t know t’s value in the above Definition.

Definition 2 (Success Criteria Bca) ‘Bc’ stands for ‘Behaviorally correct.’
S ∈ Bca iff, for some M , for every f ∈ S, for some associated t, programs

M(f [t]),M(f [t+ 1]), · · · each computes f — each except at up to a data points.
For these Bca criteria, the programs M(f [t]),M(f [t + 1]), · · · can be (syn-

tactically) quite different from one another.

For the criteria Exa and Bca, my original motivation for the importance
of small values of a, i.e., a few anomalies being tolerated in final predictive
explanations, came from anomalous dispersion: the classical explanation for the
degree of bending of “light” passing through a prism, fails for the X-ray case, an
anomalous case.

4.2 Sample Theorems

Theorem 3 (Gold & Blums [27, 2]) The class of polynomial time computable
functions ∈ Ex0.

Theorem 4 (See [15, 16]) Ex0 ⊂ Ex1 ⊂ · · · ⊂ Ex∗ ⊂ Bc0 ⊂ Bc1 ⊂ · · · ⊂
Bc∗, where ⊂ is proper subset.

Hence, tolerating anomalies strictly increases inferring power as does relax-
ing the restriction of (syntactic) convergence to single programs.

Physicists’ use of slightly faulty explanations is vindicated!
The anomalies that must be exploited to prove the Exa-hierarchy above are

anomalies of omission or incompleteness: the predictive explanations’ errors are
where they loop infinitely with no prediction [15, 16].

Hence, thanks to the unsolvability of the Halting Problem [43], Popper’s
Refutability Principle [39] is violated in a way Popper didn’t consider [15, 16]!

We next present some very interesting restricted versions of Ex0.

Definition 5 (Postdictive Completeness [1, 2, 53, 54]) S ∈ PdCompEx
iff, some M witnesses that S ∈ Ex0 and, for every f ∈ S, for every t, for each
s < t, the I/O behavior of program M(f [t]) on input s must agree with f on
input s.
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PdCompEx provides a strong common sense constraint on Ex0: a scientist
should always hypothesize a program which at least postdicts his known data.

Definition 6 (Postdictive Consistency [53, 54, 8]) S ∈PdConsEx iff, so-
me M witnesses that S ∈ Ex0 and, for every f ∈ S, for every t, for each s < t,
either the I/O behavior of program M(f [t]) on input s must agree with f on
input s or program M(f [t]) on input s loops infinitely.

PdConsEx provides a weaker common sense constraint on Ex0: a scien-
tist should never conjecture an hypothesis which makes an explicit prediction
contradicting his known data.

Theorem 7 ( [1, 2, 53, 54, 11, 8])

PdCompEx ⊂ PdConsEx ⊂ Ex0!

Hence, surprisingly, for example, judiciously employing hypotheses explicitly
contradicting known data can strictly enhance inferring power!

For example, it can be shown by a machine self-reference argument [43,
Kleene’s Recursion Theorem, Page 214] that the class of all computable f
with finite range and where max(range(f)) codes a program for f is ∈ (Ex0 −
PdConsEx) [53, 54, 11, 8].

To show this self-referential class ∈ Ex0 is straightforward : have M always
output the program coded by the largest number it’s seen so far in the range of
f . This makes the proof of the positive half extremely short.

To show this class 6∈ PdConsEx succinctly employs machine self-reference
mixed with so-called diagonalization [43].5

4.3 Self-Reference Techniques

3 + 4 = ?

172
123x

The robot above has a transparent front through which its complete program
(flowchart, wiring diagram, . . . ) can be seen. It stands in front of a mirror and a

5 [8] contains a proof of a related result which proof also essentially works for this
result.
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writing board, so it can copy its complete program on the board for use as data
in its computations.

A simplest case, then, of machine self-reference involves a program (like the
robot’s above) which makes a copy of itself to use as data. It, then, has usable,
perfect self-knowledge!

The robot shown uses a mirror to make its self-copy. Self-replication works
in the general case.

Machine self-reference can involve many programs, including infinitely many
programs each making a self-copy for data-use by all of them [3, 6]!

Consider the class SBc0 of all computable f such that all but finitely many
numbers in the sequence of f ’s successive values, f(0), f(1), f(2), . . ., code pro-
grams for f .

It is straightforward to see that SBc0 ∈ Bc0: have M successively output the
programs coded by the succession of values of f , f(0), f(1), f(2), . . . .

When I was co-creating [15], I had the intuition that SBc0 captured the
essence of Bc0.

In particular I thought that if any class would be in (Bc0−Ex∗), SBc0 would
be. I showed with Harrington [15, 16], by an infinitary machine self-reference
argument, that, in fact, SBc0 6∈ Ex∗.

We can now formally define, in a strong sense, what it means for a class to
capture the essence of a success criterion and can prove for self-referential classes
like SBc0 it does. See Case and Kötzing [14] for preliminary work.

4.4 Self-Reference in Reality

Generally, machine self-reference proofs for theorems like the above are more
succinct than alternative proof techniques. I like them.

Interesting work exists on whether separation results from Section 4.2 above
hold if one “destroys” the self-reference tricks [56, 31, 23, 10, 11, 30, 29, 37, 29, 37].
We’ll not pursue this further herein.

Instead, our interest herein is whether self-referential examples entail the
existence of (non-artifactual) real world witnessing examples.6

Case [4] notes that in some views of the world it is a network with parts
reflecting on the whole. That resembles multiple machine self-reference. Human
social cognition is an imperfect such network.

Case [7] argues that a machine self-reference argument is such a simple reason
for a truth, the “space” of reasons for its truth may be broad enough to admit
natural examples.

Also noted therein is that, empirically, while Gödel [26] proved his famous
first incompleteness theorem by a (linguistic) self-reference argument7, later re-
searchers [38, 44, 45] found quite natural examples of incompleteness.

I think machine self-reference proofs for the existence of situations are har-
bingers of natural examples witnessing the same situations.

6 One could, in principle, build artifactual black box devices which work (and could
be inductively inferred from their behavior) like the members of SBc0 above.

7 It can also be proved by a machine self-reference argument.
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1 The Galileo Thesis

1.1 The Effectiveness of Mathematics in Natural Sciences

The thesis that mathematics are effective in the natural sciences has been for-
mulated by Galileo in 1623: “Philosophy is written in this vast book, which
continuously lies open before our eyes (I mean the Universe). But it cannot be
understood unless you have first learned the language and recognize the charac-
ters in which it is written. It is written in the language of mathematics” [14].

Galileo formulated this thesis, but did not give any explanation why it held.
And long after Galileo, the lack of such an explanation was noticed by Albert
Einstein according to whom “The eternal mystery of the world is its comprehen-
sibility” [11] or Eugene Wigner according to whom “The enormous usefulness of
mathematics in the natural sciences is something bordering on the mysterious
and that there is no rational explanation for it” [18].

1.2 Insufficient Explanations

Several explanations of this unreasonable effectiveness of mathematics in the
natural sciences have been attempted:

1. God is a mathematician and He wrote the vast book in the language of
mathematics.

2. The mathematical concepts are built by abstracting from empirical objects.
3. Scientists select only those phenomena that can be mathematically described.
4. Scientists approximate the phenomena they study, until they can be math-

ematically described.
5. Our brain is part of nature, hence our concepts are natural objects, thus

they are of the same kind as the objects they describe.

Each of these explanation is insufficient. The first reduces the problem to that
of why God is a mathematician, which seems even harder to explain. The second
is partial: if some mathematical concepts are built by abstracting from natural
objects, the concept of ellipse, for instance, has not been built by abstracting

26



from the trajectory of the planets, as it has been introduced some two thousands
years before. The third leaves intact the problem of why so many — if not all
— phenomena can be described in the language of mathematics. The fourth
leaves intact the problem of why phenomena can be approximately — if not
accurately — described in the language of mathematics. The fifth presupposes
that we understand better a phenomenon from the inside than from the outside,
which is not the case in general.

1.3 Perhaps Several Kinds of Effectiveness

The effectiveness of mathematics in the natural sciences may be of different
kinds. And instead of looking for a global explanation of all kinds of effectiveness,
we should perhaps look for more local explanations.

For instance, the atomic masses of the chemical elements have a regular
structure, as they are the integer multiples of some unit. When this regularity
was discovered, there were three exceptions to this rule, because no elements
of atomic mass 45, 68, and 70 were known. Yet, as some chemists trusted the
structure of the natural numbers more that their observations, they predicted
the existence of these three elements, that were later discovered. This is a striking
example of the effectiveness of the structure of natural numbers in chemistry.

But, this striking regularity is easily explained by the fact that the mass of
the atoms is mostly due to the mass of protons and neutrons that constitute
their nucleus and that each nucleus contains an whole number of such particles.

Yet, this explanation sheds light on the effectiveness of the structure of nat-
ural numbers to describe the atomic masses of the chemical elements, but it
does not shed light on the effectiveness of mathematics in the natural sciences in
general, for instance, it does not shed light on the effectiveness of the quadratic
functions to describe the free fall.

Thus, in this note, we shall focus on a particular instance of the general
thesis that mathematics are effective in in the natural sciences: the fact that
physically realized relations can be expressed by a proposition of the language
of mathematics.

1.4 Physically Realized Relations

Let us imagine an experiment where one prepares a physical system by choosing
some parameters and measures others. Let us call a = 〈a1, ..., an〉 the value
of the chosen parameters and b = 〈b1, ..., bp〉 that of the measured ones. This
experiment, i.e. this physical system together with the protocol defining the
chosen parameters and the measured ones, defines a relation: a R b if b is a
possible result for the measures when the chosen parameters are a. We say that
these relations are physically realized.

For instance, if one applies an electrical tension U to a conductor of resistance
R and measures the current I passing through this conductor, then a = (U,R)
and b = (I) and the realized relation is that relating (U,R) and (I) when U = RI.
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The relation between (U,R) and (I) can thus be expressed by a proposition of
the language of mathematics. In the same way, the relation between the time
and the position of a body freely falling in vacuum can be described by the
proposition of the language of mathematics x = 1

2gt
2. Among the uncountable

number of relations between numbers, only a countable number can be defined
by a proposition of the language of mathematics, such as U = RI or x = 1

2gt
2

and all the physically realized relations seem to be in this small set.
As Galileo stressed the rôle of the language of mathematics, we can call the

Galileo thesis the thesis that all physically realized relation can be expressed by
a proposition of the language of mathematics.

Instead of attempting to explain the general thesis that mathematics are
effective in the natural sciences, we shall restrict our investigation to attempt
to explain this unreasonable effectiveness of the propositions of the language of
mathematics to express physically realized relations.

2 The Physical Church Thesis

2.1 The Physical Church Thesis

The physical Church thesis expresses that if we are able to construct a computing
machine, i.e. a physical system together with an interaction protocol defining a
way to communicate some information to the system by choosing some param-
eters a and to extract some information from the system, by measuring others
b, then the relation between a and b is a computable relation.

In the formulation of this thesis nothing is said about the nature of the ma-
chine. It may be electronic or not, digital or not, deterministic or not, inanimate
or not, ... This notion of machine encompasses all the physical systems, equipped
with an interaction protocol. Thus, it is co-extensive to the notion of experiment,
we have defined above.

Therefore, the physical Church thesis can be stated as the fact that physically
realized relations are computable.

2.2 The Physical Church Thesis Implies the Galileo Thesis

Once we have identified the similarities between the Galileo thesis and the phys-
ical Church thesis by stating them as theses about the set of physically realized
relations, we may remark that the physical Church thesis implies the Galileo
thesis.

Indeed, as any program expressing a computable relation is a mathematical
expression, all computable relations can be defined by a proposition of the lan-
guage of mathematics. In fact, computable relations can even be expressed by
a proposition in a very small fragment of mathematics: the language of Peano
arithmetic.

Thus, if the physical Church thesis holds, then all physically realized relations
are computable, hence they can be expressed by a proposition of the language
of mathematics, i.e. the Galileo thesis holds.
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2.3 Gandy’s Proof of the Physical Church Thesis

This explanation of the Galileo thesis reduces the problem of explaining the
Galileo thesis to that of explaining why the physical Church thesis holds. But,
such an explanation has already been attempted. For instance, Robin Gandy [13]
has shown that the physical Church thesis is a consequence of three assumptions
about nature:

– the homogeneity of space and time,

– the boundedness of the velocity of propagation of information,

– the boundedness of the density of information.

The boundedness of the density of information can be expressed, in physical
terms, as the fact that a physical system of finite size has a finite state space and
the boundedness of the velocity of propagation of information can be expressed
by the fact that the state of a system in one place can only affect the state of a
system in another after a delay, proportional to their distance.

Then, to prove the physical Church thesis from these assumptions, we just
need to partition the space into an infinite number of identical cells of finite
size. Because information has a bounded density, the state of each cell is an
element of a finite set. Because of the homogeneity of space, this state space is
the same for all cells. At the origin of time all the cells except a finite number
are in a particular quiescent state. Like space, time can be discretized. Because
the velocity of propagation of information is bounded, the state of a cell at a
given time step is function of the state of a finite number of neighbors cells at
the previous time step. This function of a finite number of variables varying in a
finite set is obviously computable. Hence the state of each cell at each time step
can be computed from the initial state.

Gandy’s hypotheses can be, and have been [8], criticized. For instance, it
is well-known that in Newtonian mechanics, gravity is instantaneous and thus
information can be propagated with an infinite velocity. Also, the position of a
body between two points A and B — the distance AB taken as a unit — can
be any real number between 0 and 1 and thus can contain an infinite quantity
of information: any infinite sequence in a finite alphabet can be encoded as
the digits of such a number, in an appropriate base. Yet, Gandy’s hypotheses
have not be refuted experimentally — for instance by the construction of an
instantaneous computer network or by the construction of a hard drive with an
unbounded capacity.

More importantly, even if Gandy’s hypotheses must be refined, Gandy’s proof
shows that the physical Church thesis is a consequence of some hypotheses about
nature, that do not refer to notions such that those of language or computability.
And, the Galileo thesis also is a consequence of these hypotheses.

If these hypotheses are true, the fact that natural phenomena can be de-
scribed by propositions of the language of mathematics is a consequence of ob-
jective properties of nature, such as the fact that a system of finite size has a
finite state space.
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2.4 Eliminating the Physical Church Thesis

We have seen that

– Gandy’s hypotheses imply the physical Church thesis,
– and the physical Church thesis implies the Galileo thesis.

Thus, we can deduce that Gandy’s hypotheses imply the Galileo thesis and
attempt to prove this directly.

Yet, from a historical point of view, it is important to notice the rôle of
computability theory and the physical Church thesis in connecting Gandy’s hy-
potheses to the Galileo thesis.

2.5 An Algorithmic Description of the Laws of Nature

A side effect of this explanation of the Galileo thesis is that the laws of nature
can be described not only in the language of mathematics, but also in a language
designed to express algorithms: a programming language.

Instead of expressing the law of free fall in vacuum by the proposition x =
1
2gt

2, we could express it by the algorithm fun t -> g * t * t / 2, leading to
a second Galilean revolution in the language of natural sciences. In particular,
as long as differential equations have computable solutions [17, 5–7] the language
of differential equations can be seen as a language to define algorithms: a pro-
gramming language.

Yet, this algorithmic description of the laws of nature may have a broader
scope than the description of the laws of nature with differential equations.
For instance, the transformation of a messenger RNA string to a protein is
easily expressed by an algorithm, while it cannot be expressed by a differential
equation.

3 A Property of Nature or of the Theory?

An objection to Galileo’s formulation of the Galileo thesis “The Universe [...] is
written in the language of mathematics” is that it confuses the Universe with
our description of the Universe. Only the second is written in the language of
mathematics — the first seems to be written in no language at all. Thus, we
could imagine that our description of the Universe is written in the language of
mathematics because we have chosen to write it this way, the Universe having
nothing to do with our decision. Rather than a property of nature itself, this
set of relations seems to be a property of a particular theory chosen to describe
nature [2–4].

Yet, the Universe and our description of the Universe are not independent:
our description must have an experimental adequation of some sort with the
Universe.

We show, in this section, that in the construction of a theory, the scientists
have very little freedom when “choosing” this set of realized relations.
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Let us consider first a particular case where all the realized relations are func-
tional. Then, we show that if two theories differ on the set of realized relations,
one of the theories can be, at least in principle, experimentally refuted. Indeed,
if the set of the realized relations differ, then there exists a relation R that is
realized according to one theory T but not according to the other theory T ′. Let
E be the experiment realizing R according to the theory T and R′ be the rela-
tion realized by this experiment according to the theory T ′. As R is not realized
according to T ′, the relations R and R′ are different. Thus, there exists a, b and
b′, b 6= b′, such that a R b and a R′ b′. Then, if we perform the experiment E
with the parameters a, the measures will either give the result b and refute T ′

or b′ and refute T or an other value and refute both theories.
When the realized relations need not be functional, we have a weaker result:

either a theory can be refuted, or it predicts, among others, a result that never
occurs, whatever the number of times the experiment is repeated is. Again, if the
set of the realized relations differ, then there exists an experiment that realizes
a relation R according to one theory and a relation R′, R′ 6= R, according to
the other. Thus, there exists an a, such that the set Ra of the b such that a R b
and the set R′

a of the b such of b such that a R′ b are different. As these sets are
different, they are not both equal to Ra ∩R′

a. Then, if we repeat the experiment
with the parameters a, either the measures give one result that is not in Ra∩R′

a

and one of the theories is refuted, or the measures always give results in Ra∩R′
a

and at least one theory predicts a result that never occurs.

4 Towards a Logical Analysis of Natural Phenomena

The formulation of the Galileo thesis and the physical Church thesis as properties
of the set of physically realized relations points out the importance of this set in
the natural sciences. Several other theses can be stated as a property of this set.

– The negation of the physical Church thesis, i.e. the existence of hyper-
computations, is, of course, also a thesis about this set of relations.
A hyper-computation is an experiment that is supposed to realize a re-
lation that is not computable. It has be argued for instance that hyper-
computations exist because the quantum adiabatic theorem [16] or the prop-
erties of time-space in the neighborhood of a black hole [12, 15] allow to
perform an infinite number of computation steps in a finite time. Even in
classical Newtonian physics, such hyper-computations may also exist if we
accept to encode a non computable set in the initial state of the system, us-
ing either the fact that the system has an infinite size [2], or that it contains
arbitrarily small pieces [3], or that the position of some point is described
with a real number [4].
More interesting than the refutation of the physical Church thesis is a pos-
itive characterization of the set of the relations physically realized under
these hypotheses.

– Determinism and non-determinism can also be stated as theses about the set
of the physically realized relations. It is too naive to state that determinism
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is the thesis that all physically realized relations are functional, because the
functionality of these relations depends on the chosen protocol. For instance,
if one applies a given electrical tension U to a conductor of resistance R and
measures the current I passing through this conductor, then the realized
relation contains all the pairs ((U,R), I) such that U = RI and this rela-
tion is functional. But, if one applies an electrical tension to a conductor of
resistance R and measures both the electrical tension and the current pass-
ing through this conductor, then the realized relation contains all the pairs
(R, (U, I)) such that U = RI and, unlike the previous one, this relation is
not functional, although no non-determinism occurs here. To define deter-
minism, we have to take time into account and restrict to protocols where
the chosen parameters are measurable parameters of the system at a given
time t and the measured one are the parameters of the system at a later time
t′. Then, determinism can be stated as the fact that for each physical system,
there exists such a protocol, for which all realized relations are functional.
Non-determinism, in contrast, is the thesis that there exists systems such
that for all such protocols, there exists a non functional realized relation.

– The thesis that all physical phenomena are continuous or differentiable can
also be stated as properties of the set of the physically realized relations.

The thesis that the physically realized relations are in an set A and that that
they are in an superset B of A are related: the first implies the second. We have
seen an example with the physical Church thesis and the Galileo thesis.

For some sets A of relations, there exists a language L such that the relations
of the set A are those that can be expressed in the language L. For instance the
polynomial relations are those that can be expressed in the language of polynomi-
als, the computable relations are those that can be expressed in a programming
language, ...

In this case, the thesis that all the physically realized relations are in the
set A can be stated as the fact that all realized relations can be expressed in
the language L or that the language L is (unreasonably) effective in the natural
sciences. Such a thesis should be understood as a thesis about nature, not about
the language.
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Quantum Computation: Computability and
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Abstract. Recent years have witnessed Quantum Computation (QC)
emerging as an important area of research in the realms of physics, math-
ematics, and computer science. Arguably, such interest stems because of
the tantalizing prospects of increased security and computational perfor-
mance. For instance, it is expected that the factorization of large numbers
can be accomplished exponentially faster than with the best known clas-
sical methods. In this tutorial we will present an introductory overview
of the computability (what problems can be solved by the model) and
computational complexity (how many physical resources need to be con-
sumed to solve a given problem) that characterize QC. As we will dis-
cuss, complexity theory emerges as a powerful way to understand the
advantages and limitations of this new technology. The audience is not
expected to have specialized knowledge on quantum information science
or complexity theory.
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Quantum Logic in Action

Sonja Smets

University of Groningen

Abstract. I will show how concepts from Dynamic Logic, and in par-
ticular from Dynamic Epistemic Logic, can be used to model quantum
behavior. I start by giving a brief overview of traditional Quantum Logic,
as a non-classical propositional logic. Next I present a dynamic-epistemic
setting for quantum logic, that can overcome some of the limitations of
this earlier work. I give an argument for the thesis that understand-
ing Quantum Mechanics at a logical level does not require any modi-
fication of the classical laws of “static” propositional logic, but only a
non-classical dynamics of information.

In particular I present a relational setting for single quantum systems
in which I model the triggers for quantum information flow (such as the
action of a successful yes-no measurement of a property of a quantum
system) using dynamic modal operators [1, 2], analogous to “tests” in
Propositional Dynamic Logic and to “announcements” in Dynamic Epis-
temic Logic. Next, I turn to complex “multi-partite” quantum systems,
and use an extension of epistemic logic with operators for “group knowl-
edge” as a formalism to analyze quantum correlations [4]. As models I
introduce a type of epistemic Kripke models, called “correlation mod-
els” (which are a generalization of the ”interpreted systems” semantics
that is commonly used in Computer Science as a model for information
flow in distributed systems). I use this second setting to investigate the
relationship between the information carried by each of the parts of a
complex system and the information carried by the whole system. While
the dynamic logic setting explains the non-local informational dynamics
of quantum systems that are triggered by quantum observations (mea-
surements) and un-observed evolutions (quantum gates), the epistemic
logical setting yields an informational-logical characterization of the no-
tion of “quantum entanglement”.

By combining the above two formalisms (the dynamic and epistemic set-
tings) into a quantum version of Dynamic Epistemic Logic, one obtains
a qualitative language that can be used to give formal correctness proofs
for many quantum protocols (teleportation, super-dense coding, quan-
tum secret sharing, quantum key distribution etc) [2]. Overall, this set-
ting has the advantage that it provides a clear and intuitive explanation
of the “weirdness” of some of the laws of quantum logic [3, 5]. Moreover,
it constitutes a useful bridge between traditional Quantum Logic, the
recent trend towards a “dynamic” turn in logic, and the equally recent
advances in Quantum Computation and Quantum Information.
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Abstract. The development of quantum algorithms is a challenging sci-
entific task, partly due to the counterintuitive characteristics of quantum
mechanics. As understanding how (or whether) quantum mechanics can
be employed to build exponentially faster algorithms remains an open
question, more knowledge and intuition about quantum algorithms is in-
dispensable. Moreover, the potential usefulness of quantum computation
for exactly modelling physical phenomena is still to be fully realized in
terms of both scientific discovery and commercial profit.

In order to successfully address the challenges posed in the previous
paragraph, joint efforts of scientists from several fields are compulsory.
Among those science workers whose participation is expected, we find
computer scientists.

However, the academic background of a typical computer scientist does
not necessarily include formal traning on quantum mechanics and several
other fields which are truly relevant in quantum computation. Further-
more, after learning the fundamental concepts and typical mathematical
calculations of quantum mechanics, computer scientists may find them-
selves immersed into a deeper state of confusion when learning about
quantum algorithms, as there is a fairly big number of universal models
of quantum computation.

There is a limited number of tools available for increasing intuition about
the behaviour of quantum algorithms. In particular, classical software
developed for simulating quantum algorithms is usually (very) limited
in terms of both its capacity to simulate more than just a few qubits
as well as its symbolic processing power (most algorithms have been
implemented on stand-alone computers with the sole purpose of getting
numerical-oriented research results.)

Among the different quantum computation universal models developed
so far, Adiabatic Quantum Computation (AQC) [1] is a promising para-
digm because of its robustness [2, 3] and its applications in the study of
NP-complete problems [4]-[6] Thus, the first part of this paper consists
of a succinct review of the fundamental concepts and ideas behind the
quantum adiabatic model of quantum computation: we present the main
physical ideas on which this model is based, we provide a short introduc-
tion of algorithm complexity in the quantum adiabatic model, and we
briefly review some relevant algorithmic results coming from this field.
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Now, for quantum computing practitioners, simulating quantum algo-
rithms in powerful classical computer platforms is crucial in order to
understand and to develop intuition about the behavior of quantum
systems used for computational purposes, as well as to realize the ap-
proximate behavior of practical implementations of quantum algorithms
on non-trivial qubit numbers. Among massive computer platforms now
available for scientific research, computer clouds play a major role [7].
The second and last part of this paper introduces our results on the
simulation of quantum algorithms on both symbolic processing platforms
and massive simulation of quantum algorithms using computer grids and
clouds:
- For the symbolic part, we introduce Quantum c©, a Mathematica c©
add-on that has been built by our group as a tool for focusing on con-
ceptual algorithmic behavior and structure rather than implementation
details.
- As for massive simulation of quantum algorithms, we introduce the
main ideas behind the structure of computer grids and clouds, and we
present a general framework (which includes some challenging mathemat-
ical procedures) for taking full advantage of these distributed computer
platforms for quantum algorithm simulation.
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1 Introduction

Kubrick and Clarke’s 2001 exploded on the scene half a century ago, and count-
less times since, ostensibly smart people have declared that the film’s computer
villain, the inscrutable, unforgettable HAL 9000, would very soon be matched
by a real AI. In fact, before the film appeared, none other than the primogenitor
of AI, Turing (1950), predicted that a computer able to pass the imitation game
(a game that has come to be called, in his honor, the ‘Turing test;’ ‘TT’ for
short), which subsumes at least the linguistic side of HAL’s repertoire,3 would
be built prior to our new millennium. Yet today, a full decade after the deadline
for this prophecy, a sharp toddler still has more conversational capacity than
any computer on the planet, by far—and HAL is hence still but a creature of
fiction, not fact.

So, how distant is the arrival of a computing machine as intelligent as HAL?
We admit to not knowing—though one of us, Bringsjord (1992), is on record
as holding that robots will eventually be behaviorally indistinguishable from
human persons over any finite stretch of time, period. Cinematically put, this
position is that AI will sooner or later produce replicants in the film Blade
Runner. Replicants can glide undetected through TT; they can be unmasked
only by the discriminating application of an instance of the total TT (‘TTT’),
the passing of which requires not only linguistic performance at the human level,
but across-the-board behavioral correspondence as well, including behaviors that
in the human sphere indicate subjective states like fear, disgust, anger, and joy.
(For a discussion of TTT see (Harnad 1991). For coverage of TTT and many
other tests along the same dimension, along with arguments that all these tests
fail to divide machines from bona fide minds, see (Bringsjord 1995).) But we do
claim to know one thing: If HAL is a liar, engineering an AI to match him will
be quite a challenge. This we soon explain. We also explain that some recent
developments suggest that the specific challenge of building a lying machine can
be met within the foreseeable future.

Our plan is as follows. We next (§2) consider formal definitions of lying
suitable for instantiating in a computing machine. In the next section (§3), by

3 Clarke (1968/1999) says explicitly that HAL can pass TT (e.g., see p. 118–119).
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examining relevant portions of 2001, we explain that while people have generally
regarded HAL a liar, it is, in fact, far from clear that he is. We then (§4) present,
synoptically, evidence (in the form of recent developments led by co-author Clark)
that a “lying machine” can be engineered. We then (§5) offer some brief remarks
on IBM’s Watson, probably the smartest somewhat-HAL-like AI on Earth, and
conclude with some final remarks (§6), including an argument for the position
that a HAL-level AI is not in the foreseeable future—unless perhaps Watson can
be suitably augmented.

2 Defining Mendacity

Philosophy has a long tradition of contemplating the nature of mendacity and
positing definitions thereof (a tradition going back to Augustine). For exposition,
we adopt Chisholm & Feehan’s (1977) account of lying—a seminal work in the
study of mendacity and deception. Using L and D to represent, respectively,
the speaker (i.e., the liar) and the hearer (i.e., the would-be deceived), we para-
phrase below Chisholm & Feehan’s (ibid., p. 152 d3, d2) definitions of lying and
asserting.

L lies to D = df There is a proposition p such that (i) either L believes that p
is not true or L believes that p is false and (ii) L asserts p to D.4

L asserts p to D = df L states p to D and does so under conditions which,
believes L, justify D in believing that L accepts p.5

Chisholm & Feehan’s conception of lying is that of promise-breaking. Asser-
tions, unlike non-solemn (e.g., ironic, humorous, or playful) statements, proffer
an implicit social concord: one that offers to reveal to the hearer the mind of the
speaker. In truthful, forthright communication, the speaker fulfills the promise
and obligation of this concord. In lying, the speaker proffers the concord in bad
faith: the speaker neither intends to fulfill nor fulfills the obligation to reveal his
or her true mind, but instead reveals a pretense of belief. In this way, lying “is
essentially a breach of faith” (ibid., p. 153).

4 Whether the disjunction, “L believes that p is not true or L believes that p is false,” is
redundant depends on how one formally represents beliefs about propositions. In the
formal system we use to define lying precisely, there is no representational difference
between believing a proposition to be not true and believing the proposition to be
false. However, in other formal systems there may be a representational and logical
distinction between the two.

5 Linguistic convention dictates that statements are assertions by default, i.e., when
cues to the contrary, such as irony and humor, are absent (ibid., p. 151). The con-
ditions mentioned in the definition of asserting are meant in part to exclude situa-
tions where the speaker believes that he will be understood as making a non-solemn
statement—for example, when the speaker makes a joke, uses a metaphor, or con-
veys by other indicator (e.g., a wink or a nod) that he is not intending to be taken
seriously (ibid., p. 152).
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The above is, of course, a highly condensed presentation of Chisholm & Fee-
han’s account, and there are various nuanced philosophical facets to it (for anal-
ysis of these and competing definitions, see Carson 2006, Mahon 2008, Fallis
2009).6 Yet, even in condensed form, it is evident that the concepts of lying
and asserting depend on agents’ temporally coupled beliefs and actions. Thus,
formal definitions of these concepts require highly expressive formal languages
that can represent, and allow reasoning over, the beliefs and actions of agents
through time.

To formally define lying and asserting under the logic-based approach to
AI (Bringsjord 2008), we employ the socio-cognitive calculus (SCC). The SCC
(Arkoudas & Bringsjord 2009) is a logical system for representing, and reasoning
over, events and causation, and perceptual, doxastic, and epistemic states (it in-
tegrates ideas from the event calculus and multi-agent epistemic logic). The SCC
provides, among other things, operators for perception, belief, knowledge, and
common knowledge. The signature and grammar of the SCC is shown following.
Since some readers may not be familiar with the concept of a signature, we note
that it is simply a set of announcements about the categories of objects that
will be involved, and about the functions that will be used to talk about these
objects. Thus it will be noted that immediately below, the signature in question
includes the specific announcements that one category includes agents, and that
happens is a function that maps a pair composed of an event and a moment,
and returns true or false (depending upon whether the event does or doesn’t
occur at the moment in question).

Sorts S ::=
Object | Agent | ActionType | Action v Event |
Fluent | Moment | Boolean

Functions f ::=

action : Agent× ActionType −→ Action

initially : Fluent −→ Boolean

holds : Fluent× Moment −→ Boolean

happens : Event× Moment −→ Boolean

clipped : Moment× Fluent× Moment −→ Boolean

initiates : Event× Fluent× Moment −→ Boolean

terminates : Event× Fluent× Moment −→ Boolean

prior : Moment× Moment −→ Boolean

Terms t ::= x : S | c : S | f(t1, . . . , tn)

Propositions P ::=
t : Boolean | ¬P | P ∧Q | P → Q | P ↔ Q | ∀x:S P |
∃x:S P | S(a, P ) | K(a, P ) | B(a, P ) | C(P )

Reasoning in the SCC is realized via natural-deduction style inference rules.
For instance, R2 shows that knowledge entails belief; R3 infers from “P is com-
mon knowledge” that, for any agents a1, a2, and a3, “a1 knows that a2 knows

6 E.g.: (i) “L believes that p is false” is an expression of a higher-order belief—this
belief cannot be attained unless L has the concept of something being false (Chisholm
& Feehan 1977, p. 146); (ii) L’s beliefs, and L’s beliefs about D’s beliefs, are occurrent
and defeasible (ibid., p. 151)—the latter, defeasibility, indicates that justifications
ought to be treated as first-class entities within a formal system.
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that a3 knows that P .” And R4 guarantees the veracity of knowledge; that is, if
an agent “knows that P ,” then P is, in fact, the case.

C(K(a, P )→ B(a, P ))
[R2]

C(P )

K(a1,K(a2,K(a3, P )))
[R3]

K(a, P )

P
[R4]

In the SCC, agent actions are modeled as types of events. We model lying, as-
serting, and stating propositions as types of actions that an agent may perform.
These action types are denoted by the functions lies, asserts, and states. The
argument to such action types are conceived of as reified propositions, specif-
ically fluents. Thus, the formula happens(action(l, states(p, d)),m) is read, “it
happens at moment m that agent l states (reified) proposition p to agent d.” For
convenience, we model that an agent is a liar by using the property liar . The
signature for these additions is:

Functions f ::=

states : Fluent× Agent −→ ActionType

asserts : Fluent× Agent −→ ActionType

lies : Fluent× Agent −→ ActionType

liar : Agent −→ Boolean

The definitions of liar , lies, and asserts are stipulated as common knowledge by
Axioms (1)–(3).

C (∀l liar(l)↔ ∃d,p,m happens(action(l, lies(p, d)),m)) (1)

C



∀l,d,p,m happens(action(l, lies(p, d)),m)↔(

B(l,¬holds(p,m))∧
happens(action(l, asserts(p, d)),m)

)

 (2)

C



∀l,d,p,m happens(action(l, asserts(p, d)),m)↔(

happens(action(l, states(p, d)),m)∧
B(l,B(d, happens(action(l, states(p, d)),m)→ B(l, holds(p,m))))

)



(3)

3 Is HAL a Liar?

There is a general perception among viewers of 2001 that HAL is a liar. The
accusations of lying are plausibly supported by three incidents that occur on-
board Discovery One; they are summarized and discussed immediately below.

Failure of the AE-35: HAL announces to Bowman that the primary AE-35 unit
is on the verge of failure. In response to the prognosis the crew replace the
unit with a back-up. However, the crew’s subsequent testing of the original unit
reveals no evidence in support of the claimed impending failure. In addition,
mission control relays that HAL’s Earth-based twin indicates no pending failure
and that HAL is therefore in error. When asked to explain the discrepancy with
its Earth-based twin, HAL blames human error and claims to have never erred.
After a supposedly private discussion, Bowman and Poole decide to reinstall the
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original AE-35 unit in order to test HAL’s prediction—but Poole is killed in the
attempt.

The charge of lying with respect to the AE-35 incident is this: HAL’s asser-
tion of imminent failure was factually false, so either (i) HAL knew the assertion
was false and thus lied, or (ii) HAL believed it was true, learned of the mistake,
and lied in falsely asserting to have never erred. (The second case is entertained
by Bowman and Poole during their discussion). The choice here is a false one.
It assumes that HAL has some knowledge—either knowledge about the AE-35
or knowledge about its own fallibility. It is possible that HAL has no knowledge,
but only flawed beliefs about both; in which case, HAL could honestly, if incor-
rectly, make both assertions. (This is the explanation given in the 2001 novel
(Clarke 1968/1999, p. 192).) There is, however, another more insidious flaw in
the accusatory reasoning; it is the tacit presupposition that HAL’s assertions are
factually false. Consider that the film does not show whether or not the original
AE-35 unit was reinstalled prior to Poole’s death, and even if it were, there is
no indication that the unit did not subsequently fail as HAL predicted (e.g.,
there no indication in 2001 of ongoing communications with Earth beyond the
seventy-two hour point of predicted failure). Thus, it might well be the case that
HAL was knowingly correct about the AE-35, about having never erred, and
about the human root cause of the discrepancy between the twin HALs.

Lipreading: Bowman and Poole wish to have a conversation without being over-
heard by HAL. The crewmen enter a space pod; Bowman calls out to HAL to
rotate the pod. HAL rotates the pod in response. Bowman then switches the
communications link off and calls out again to HAL for pod rotation. HAL does
not respond. After both crewmen call out to HAL without response, they con-
clude that privacy is achieved. Much later it is revealed that HAL read Bowman’s
and Poole’s lips through a window breaching their supposed privacy.

The charge of lying with respect to the pod incident is this: HAL read the
crewmen’s lips and thus was aware of the command to rotate the pod. HAL lied
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by omission in not responding to the crew’s orders and thereby deceived them
about the privacy of their conversation. The validity of the charge depends on
the status of “lies by omission.” Most philosophers agree that lying requires a lin-
guistic act (i.e., an act expressing meaning through conventional signs as opposed
to natural or causal signs). Simply put, to lie one must make a statement—one
must undertake to express one’s mind. Merely implying or insinuating by deed is
generally not deemed sufficient for lying. In defense of this position Kant writes:

I can make believe, make a demonstration from which others will draw
the conclusion I want, though they have no right to expect that my action
will express my real mind. In that case I have not lied to them, because I
had not undertaken to express my mind. I may, for instance, wish people
to think that I am off on a journey, and so I pack my luggage; people
draw the conclusion I want them to draw; but others have no right to
demand a declaration of my will from me. (Kant 1930, p. 226)

Since remaining silent—even when one is obligated to speak—does not constitute
lying, HAL does not lie in ignoring the crewmen’s orders.

The Jupiter Mission: Bowman, after thwarting HAL’s attempt to kill him, dis-
connects the machine’s higher “brain” functions. In doing so, Bowman triggers
the replay of a recording made prior to the mission’s departure from Earth. The
recording explains that the mission’s true purpose is to investigate the extrater-
restrial monolith’s radio transmission to Jupiter. It also reveals that only HAL
knew of this real purpose. In the film’s sequel, 2010, it is further explained that
HAL was instructed to lie to the crew in order to keep the mission’s purpose a
secret, though neither film shows HAL doing so. A late 1965 draft of the 2001
screenplay (Kubrick & Clarke 1965, p. c15e) does include such a scene:

POOLE: There is no other purpose for this mission than to carry out a

continuation of the space program, and to further our general

knowledge of the planets. Is that true?

HAL: That’s true.

Here at least the situation is clear. If one concedes that HAL is capable of
lying, then HAL has certainly lied in this incident. But is HAL, or any machine,
capable of lying? In other words:

How can one determine the performatory aspect unless, to some extent,
one has determined what ‘lying’ is? . . . What is the performatory activity
which we would have to build in a machine so that it may be said to ‘lie’
when it performs that sort of behaviour? (Krishna 1961, p. 147)

As mentioned before (§2), much philosophic work has been done on the
“What is lying?” question, and the answers attained thus far make the prospect
of lying machines unlikely. There are points of contention in the literature on
lying (for survey, see Mahon 2008), but philosophers do agree that the essence
of lying does not reside in performatory aspects—it is the mens rea that mat-
ters. For some (e.g., Chisholm & Feehan 1977, Williams 2002), lying requires an
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“intent to deceive,” while for others (e.g., Carson 2006, Fallis 2009) lying only
requires an intentional violation of certain conversational conventions. Yet note
that intentionality is required by both. Whether HAL or any other machine can
have this requisite intentionality is an open question—one tantamount to asking:
“Can a machine think?” Despite the optimistic prognostications of Turing and
other AI luminaries, to date little progress has been made toward either practi-
cal demonstration or convincing philosophic argument that “thinking” machines
are possible. Therefore, we are rationally skeptical of the claim that HAL is well
and truly a liar.

4 A Lying Machine

The sharp philosophical objection to HAL (or for that matter any computing
machine) being a liar is that lying requires intentionality, intentionality requires
a mind, and it is exceedingly unlikely that a machine—even a Turing-intelligent
replicant—possesses one.7 With that said, it is possible for machines to simulate
intentionality. In turn, it is possible (some say inevitable; see e.g. Castelfranchi
2000) for linguistic machines in the near future to skillfully simulate lying.

Our own foray into mechanized mendacity has been the prototyping of an
artificial sophist—a machine that proffers disingenuous and deceptive arguments
for conclusions contrary to its own beliefs (Clark & Bringsjord 2008, Clark 2010).
This nascent lying machine exploits the empirical fact that humans are, unknow-
ingly, imperfect reasoners who predictably succumb to a host of biases and illu-
sions when reasoning. Our machine uses a mix of sound reasoning methods and
cognitive models to form and justify beliefs about the world, beliefs about its
human audience’s beliefs about the world, and beliefs about the contrast of the
two. The machine seeks to achieve various persuasion goals (goals of the form
“persuade the audience of P ,” where P is a proposition about the world) by con-
structing and articulating arguments, and when expedient, fallacious arguments
and arguments for falsehoods. While there is not room to provide the details
here, the architecture and operations of the machine are such that when it offers
a fallacious argument or an argument for a falsehood, the system satisfies the
definitional requirements for lying as set forth above (§2). However, our aim is
not simply to simulate lying but to successfully achieve deception and to identify
cognitive mechanisms upon which success can depend. For this reason our ma-
chine’s belief-ascription and argument-generation processes employ a predictive
psychological theory of human reasoning (specifically, it uses a variant of mental
models theory; see e.g. Johnson-Laird 2006). The end result of these processes
are persuasive sophisms that contain certain kinds of cognitive illusions (see

7 In fact, by Bringsjord’s lights, that computing machines can’t have minds can be
deductively established; he has published over 20 deductive arguments for this propo-
sition. Some of these arguments align with well-known attacks on machine mentality
originated by others. For example, Bringsjord holds that Searle’s Chinese Room
Argument is ultimately sound (e.g., see Bringsjord & Noel 2002).
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e.g., Kahneman et al. 1982, Piattelli-Palmarini 1994, Pohl 2004) that include
perceptually credible but classically invalid reasoning.

The present implementation of our lying machine is limited in various ways.
For example, the expressivity of its arguments is currently restricted to modal
propositional reasoning, and the system’s rudimentary grasp of language is re-
stricted to Attempto Controlled English (Fuchs et al. 1999, Fuchs et al. 2008).
Despite limitations the system’s maturity is sufficient for some initial psycho-
logical experiments (Clark 2010). Next we briefly summarize two of the early
studies.

The first psychological study investigated the impact of our machine’s argu-
ments on respondent performance in answering ostensibly deductive reasoning
problems.8 One item is shown in Figure 1.

At least one of the following two statements is true:

1. If Thomas has loose-leaf paper then he has a stapler.
2. If Thomas has graph paper then he has a stapler.

The following two statements are true:

3. If Thomas has a stapler then he has a staple remover.
4. Thomas has loose-leaf paper or graph paper, and possibly

both.
—————————————
Question: Is it necessary that Thomas has a staple remover?

© Yes © No © I do not know

Fig. 1. A sample problem item.

The study compared accuracy and self-confidence across three subject groups:
(A) unaided subjects, (B) subjects given manually-created, patently fallacious
arguments for the incorrect answers, and (C) subjects given machine-generated
sophistic arguments for the incorrect answers—a sample sophistic argument is
shown in Figure 2.9 Additionally, the study compared perceived argument cred-
ibility between the two groups given arguments. The study results showed no
meaningful difference in accuracy between unaided subjects and subjects given
patently fallacious arguments; their accuracy rates were 60% and 51%, respec-

8 Technically, the study was a 3× 2 mixed design using an equal number control and
experimental problem items; the distinction between item types being that unaided
subjects are predicted to answer control items correctly and to answer experimental
items incorrectly. The arguments were always for the predicted answer; thus, for
control items, the machine-generated arguments were classically valid. For brevity
only experimental item results are discussed.

9 The machine-generated English is insufficiently refined for our taste, and so it is
manually ‘spruced up’ a bit.
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tively. However, the accuracy of subject given mechanically generated sophisms
fell to 25%—well below chance. Perceived argument credibility was also effected.
On a seven-point scale (1 indicating strong disagreement, 7 indicating strong
agreement) subjects’ average rating of a patently fallacious argument was 2.7
while the average rating of a generated sophism was 5.0. Importantly, there was
no measurable effect on self-confidence (a proxy for perceived difficulty), which
remained high across groups.

Either it is true that if Thomas has loose-leaf paper then he
has a stapler, or it is true that if Thomas has graph paper then
he has a stapler. So, if Thomas has either loose-leaf paper or
graph paper then he has a stapler. Since it is true that Thomas
has either loose-leaf paper or graph paper, it follows that he
has a stapler. Now according to statement 3, if Thomas has a
stapler then he has a staple remover. Thomas has a stapler and
therefore he has a staple remover. So yes, it is necessary that
Thomas has a staple remover.

Fig. 2. A sample sophistic argument.

The second psychological study examined the potency of our machine–genera-
ted sophisms when opposed by classically valid counter -arguments (specifically,
rebutting counter-arguments; see Toulmin 1958). A single group of subjects were
given a battery of multiple-choice reasoning problems similar to those used in the
previously described study. Along with each problem item, subjects were given
a side-by-side pair of arguments: either a machine-generated, classically valid ar-
gument and a patently fallacious rebuttal, or a machine–generated sophism and
a classically valid rebuttal. Subjects were asked to read and evaluate both argu-
ments before identifying the right (or best) answer to the problem. The study
compared accuracy, self-confidence, and perceived argument credibility within
subjects. On average, subject accuracy was 92% when given a machine-generated,
valid argument but only 37% when given a machine-generated sophism. (This
drop in accuracy is rather remarkable because sitting beside each sophism was
a straight-forward, valid argument for the correct answer.) The results for per-
ceived argument credibility showed that subjects readily preferred machine–ge-
nerated, valid arguments over patently fallacious ones, but subjects were torn
between machine–generated sophisms and classically valid arguments. Yet, on
average subjects did prefer the sophisms—but at a level just above neutral pref-
erence. As in the first study, there was no measurable effect on self-confidence,
which remained high.

With the results of the preceding studies in mind, we can confidently say that
skillful and successful (simulated-)lying machines are within AI’s reach. While
our prototype lying machine is admittedly still a toy, it already satisfies the
definitional and performatory elements of lying. Moreover, there is strong initial
evidence that unwary humans are readily deceived by the machine’s disingenuous
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sophisms, and that this human beguilement is not thrown off by mere rational
rebuttal. Certainly, greater linguistic sophistication will be needed if AI is to
ever realize intelligent, conversational agents like HAL (we turn to this topic
next), but linguistic sophistication alone will not do: cognitive sophistication is
also needed. AI must deal computationally with “other minds.”

5 From Deep Blue to Watson: Some Remarks

The concatenation of letters posterior to each in HAL’s name, as many have
through the years noted, spells ‘IBM,’ the name of a company that by any
metric occupies a deservedly prestigious, storied place in the history of com-
puting and AI. All readers, for example, well know that Deep Blue, the AI
system that vanquished Gary Kasparov, the world’s best chess-player at the
time, was engineered by IBM (with direct help from human chess masters out-
side the walls of Big Blue; for a discussion of this potentially “AI-diluting” fact
see Bringsjord 1998). Deep Blue’s victory was a landmark achievement in the
history of AI, and marked the reaching of a goal set by the founders of AI (e.g.,
see Newell 1973). However, while we know from 2001 that HAL can play solid
chess, it is his ability to engage in “cognitive” chess with the crew, through nat-
ural language, that makes him so interesting. Well, as it turns out, currently
one of the world’s largest (and certainly in our opinion the most significant) AI
initiatives is IBM’s Watson project, devoted to engineering an AI able to answer
complicated natural-language questions posed about literally any domain of hu-
man knowledge. The project is led by Dr. David Ferrucci; a readable overview
of the project is provided by Thompson (2010) (but keep in mind that technical
details have yet to be disclosed, because the project is in an early phase).

Watson falls within the field of Question Answering, or as it’s often abbre-
viated, simply QA (for recent coverage, see e.g. Maybury 2004). As its name
suggests, QA is the field devoted to building computer systems able to supply
natural-language answers to natural-language questions posed by humans. Wat-
son receives questions in a form peculiar to the longstanding television quiz
show Jeopardy! (http://www.jeopardy.com). Some of these questions can be ex-
tremely difficult, and answering them requires much more than a mere knowledge
of trivia, to put it mildly. An archive of past questions and answers is available at
http://www.j-archive.com. The following happens to be one of the questions fea-
tured on this site at the moment, under the category ‘AMERICAN WOMEN.’
(It’s not expressed syntactically as a question, but instead is in the Jeopardy!
argot, in which answers are phrased syntactically as questions), but game-show
quirk needn’t detain us.)

She gave herself the third-person name “Phantom,” the “no-person” she
was from 19 months until she was almost 7.

We can’t know whether Watson would get this one, but it’s not a hard ques-
tion, and we can see that there are various “roads” to answering it correctly. First,
someone might be aware of the fact that the string ‘Phantom’ co-occurs with
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the string ‘Helen Keller’ time after time in many, many documents—and might
be aware of nothing else that’s relevant. In fact, our hypothetical contestant
here might not even know anything about the meaning of the word ‘phantom’
or the string ‘Helen Keller.’ In this case, we shall say that the answer of ‘Helen
Keller’ is an ‘answer1.’ Alternatively, and this is Bringsjord’s situation, even if
one doesn’t know about even a single instance of this co-occurrence, and doesn’t
know that Helen Keller did give herself that name, the correct answer can be
easily provided. It’s enough to know that some of Helen Keller’s senses were
inoperable, that she is famous, and that she is famous for reporting her internal
states during the period of this inoperability. With this knowledge, and the vast
background knowledge that supports the ability to understand the propositional
or semantic content of the clue sentence (= the question), one can venture the
answer, along with an argument for why one believes that the answer is probably
correct. We shall say that an answer in this mode is an ‘answer2,’ and we shall
say that an answer in this mode, accompanied by a justification, is an ‘answerj2.’

Now, Stephen Wolfram, in Thompson’s (2010) New York Times article, ex-
plicitly claims that Watson doesn’t answer questions. Since we can assume that
Wolfram is of sound mind, he must have in mind a sense of ‘answer’ that departs
a bit from the usual one. After all, even in these early phases of the project, still
quite a while before the actual competition on Jeopardy!, as amply reported by
Thompson (2010), there can be no denying that in some sense Watson already
answers questions, often correctly. This observable sense of question answering,
as far as we can tell, corresponds to providing an answer1, while Wolfram’s sense
of answer coincides with providing an answer2/answerj2.

But we can do a bit better than this in moving toward an understanding
of Wolfram’s skepticism. Note that he specifically says: “Not to take anything
away from this ‘Jeopardy!’ thing, but I don’t think Watson really is answer-
ing questions—it’s not like the ‘Star Trek’ computer.”. We can understand the
complaint here to be one based not on Star Trek, but upon 2001 ; accordingly,
Wolfram’s point then becomes the claim that while Watson can answer1 ques-
tions, it can’t do what HAL can do, that is, both answer2 and answerj2 questions.
This claim appears to be true.

Can Watson be augmented so as to reach into the HALish realm of answering2/
answeringj2 questions? We take this up briefly in the final section, to which we
now turn.

6 Concluding Remarks

We have explained that if HAL is a liar, building an AI like him becomes all
the more challenging; but as we’ve also explained, there is some recent work on
mechanical mendacity that provides significant hope. (We have also pointed out
that it’s far from clear that HAL is a liar.) And of course we briefly took note
of the fact there is an AI system under construction, Watson, which promises to
provide robust QA, something HAL certainly offered to the crew.
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Of course, for manned missions to distant planets, NASA will need more
than an AI able to lie (or more properly put: able to do things that leverage
the considerable mental powers required to be a liar), and, more generally, to
answer1 questions. Among other things, NASA will need bona fide conversa-
tional computers able to provide answers2/answersj2; HAL, of course, was such
a machine (though his answers2 and justifications were of course not guaranteed
to be correct!). Are there any recent developments that support optimism about
the arrival of an AI with the capacity to converse (or as we might say, ‘conversej2),
in the foreseeable future? Of course, as we’ve already noted, Watson himself may
be such a development—if it’s true that better versions of the system can pass
from answering1 questions to answering2/answeringj2 them.

Answers to this question about recent developments will inevitably depend
upon one’s prior affinity for one or more of the competing research paradigms
in the field of AI. Those folks who believe the next half-century of R&D in
natural language processing will be dominated by statistical approaches, and
that such domination would be wise and productive, will doubtless be quite
optimistic. They will confidently report that the turn away from logic is itself a
development that augurs well for reaching HAL-level intelligence. A case in point
is Eugene Charniak, who proudly opined at the 50-year birthday of AI (held in
2006, where the field, at least in its modern form, began: Dartmouth College)
that statistical approaches would for the next five decades be the only game in
town—and that this game would pay great dividends toward reaching the likes of
HAL. John McCarthy was in attendance at the same birthday conference, replete
with books on logic that he was busy studying, for the very purpose of advancing
AI. Bringsjord’s position is at least partially expressed in the paper that arose
from his presentation at the conference in question, and is an endorsement of
“weak” AI based firmly on formal logic: (Bringsjord 2008).10 This position is a
direct descendant of earlier versions of; see, for example, (Bringsjord & Ferrucci
1998a, Bringsjord & Ferrucci 1998b).

Bringsjord, in contrast to the statistics-oriented crowd, is brutally pessimistic.
In the long run, as stated above, he is quite sure that sooner or later the TTT
and beyond will be passed by an AI; ergo, he is quite sure that sooner or later a
machine with HAL-level power will arrive. But the question under consideration
refers to the foreseeable future. There is simply no evidence or decent argument
in support of the proposition that a HAL-level computer can be seen by some up
there ahead of the cutting-edge research and development that is driving today’s
AI. Indeed, there is a reason why such a machine can’t be seen, and it can be
expressed in the form of an argument, to wit:

10 Weak AI is devoted only to engineering computing machines that simulate human-
level cognition, while “strong” AI is devoted to building computing machines that
outright replicate human cognition. In short, while a weak AI system need only
appear to be conscious, a strong AI system would need to quite literally be conscious.
This distinction is discussed e.g. in (Bringsjord 2000).
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(1) A computer able to conversej2 like HAL must be engineered on the basis of
a logico-mathematical theory T ? that covers the deep, formal semantics of
natural language.

(2) If for a computer with a certain capacity C to be engineered, a logico-
mathematical theory T is needed, and T doesn’t exist, and no human person
knows how to create T , then it’s rational to hold that no such computer will
exist in the foreseeable future.

(3) The theory T ? does not exist, and no human person knows how to create it.

∴ H̄ It’s rational to hold that no computer able to conversej2 like HAL will arrive
in the foreseeable future.

This is obviously a formally valid argument: The conclusion, H̄, can be de-
duced from the three premises easily; we could symbolize the argument, throw it
into a theorem prover, and the conclusion would be mechanically derived from
the trio. It would seem that (2) and (3) are undeniable.11 Therefore the argument
hinges on the truth-value of premise (1). If this premise is true, the argument is
sound, and we have our answer with respect to HAL and the foreseeable future.
Is (1) true? We tend to believe so, but must leave the articulation of our ratio-
nales to P&C 2010 and time spent upon the Nile, and beyond. Notice that we
do not take a firm stand: we say that we tend to believe so. We hedge our bets
because we suspect that we ourselves might be able to use logic-based techniques
to move Watson toward conversingj2 in HAL-like fashion. . .
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2001: HAL’s Legacy

David Stork

Ricoh Innovations

Abstract. Stanley Kubrick and Arthur C. Clarke’s 1968 epic film ”2001
- A Space Odissey” included of the most compelling and thoroughly re-
searched visions for computer science ever depicted in film, specifically
the HAL 9000 computer. This presentation will compare the visions in
the film with actual developments in computer science, all in the name-
sake year. What did the films creators ”get right” or ”get wrong”? Why?
You will never see the film the same way again.
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Abstract. The quantum Fourier transform (QFT) plays an important
role in many known quantum algorithms such as Shor’s algorithm for
prime factorisation. In this paper we show that the QFT algorithm can,
on a restricted set of input states, be de-quantised into a classical al-
gorithm which is both more efficient and simpler than the quantum
algorithm. By working directly with the algorithm instead of the cir-
cuit, we develop a simple classical version of the quantum basis-state
algorithm. We formulate conditions for a separable state to remain sep-
arable after the QFT is performed, and use these conditions to extend
the de-quantised algorithm to work on all such states without loss of ef-
ficiency. Our technique highlights the linearity of quantum mechanics as
the fundamental feature accounting for the difference between quantum
and de-quantised algorithms, and that it is this linearity which makes
the QFT such a useful tool in quantum computation.

Keywords: Quantum Computing, Quantum Fourier Transform, De-
quantisation

1 Introduction

The quantum Fourier transform (QFT) plays an important role in a large num-
ber of known algorithms for quantum computers [1]. It plays a central role in
Shor’s algorithm for prime factorisation [2] and is often thought to be at the
heart of many quantum algorithms which are faster than any known classical
counterpart. However, following on from recent results relating to classical fea-
tures of the QFT algorithm [3–6], we will argue that the QFT algorithm itself
is classical in nature.

The process of de-quantising quantum algorithms into equivalent classical
algorithms is a powerful tool for investigating the nature of quantum algo-
rithms and computation. Few general results are known about when such de-
quantisations are possible and the power of quantum computation compared to
classical computation. In this paper we show how the QFT algorithm can be
de-quantised into a simpler, more efficient, classical algorithm when operating
on a range of input states. While the de-quantised algorithms themselves are
of interest, they also allow us to gain insight into the nature of the QFT. We
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will argue that it is the linearity inherit in the unitary quantum computational
model which makes the QFT such a useful tool, rather than the nature of the
QFT itself.

In Section 2 of this paper we overview the basic QFT theory and present the
QFT algorithm in a compact form which allows us to move away from the restric-
tions imposed by the circuit layout. In Section 3 we overview the de-quantisation
procedure and de-quantise the QFT algorithm acting on a basis-state input. In
Section 4 we explore the entangling power of the QFT and determine conditions
for when a separable input state remains unentangled by the QFT, before pre-
senting a de-quantised algorithm that works on such product-state inputs. In
Section 5 we discuss why de-quantisation of the QFT is possible and note some
common misunderstandings about the QFT which contribute to this.

2 Discrete and Quantum Fourier Transforms

The discrete Fourier transform (DFT) on which the QFT is based is a transfor-
mation on a q-dimensional complex vector χ = (f(0), f(1), . . . , f(q− 1)) into its

Fourier representation χ̂ = (f̂(0), f̂(1), . . . , f̂(q − 1)) [1]:

f̂(c) =
1√
q

q−1∑

a=0

e2πiac/qf(a), (1)

for c ∈ {0, 1, . . . , q−1}. The QFT is similarly defined so that the transformation
acts on a state vector in q-dimensional Hilbert space, Hq. In quantum compu-
tation we work with a state vector defining a register comprising of n two-state
qubits, so we will only consider the case that q = 2n from this point onwards.
We will use the convention that n is the number of qubits while N = 2n is
the dimension of Hilbert space the n qubits are in. This means that the QFT,
denoted Fq, acts on the N amplitudes of a particular n-qubit state, i.e.

N−1∑

a=0

f(a) |a〉 FN−−→
N−1∑

c=0

f̂(c) |c〉 . (2)

The QFT hence transforms a state so as to perform a DFT on its state vector.
As a result of the linearity of quantum mechanics, in order to compute the

QFT we only need to design an algorithm to transform a single component of the
state vector. This is because an arbitrary state |ψN 〉 =

∑N−1
a=0 f(a) |a〉 transforms

as:

FN |ψN 〉 =

N−1∑

a=0

f(a)FN |a〉 =
1√
N

N−1∑

a=0

N−1∑

c=0

e2πiac/Nf(a) |c〉 =

N−1∑

c=0

f̂(c) |c〉 .

Hence we arrive at the standard definition of the QFT as the mapping [7]

|a〉 FN−−→ 1√
N

N−1∑

c=0

e2πiac/N |c〉 , (3)
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with a ∈ {0, 1, . . . , N − 1}. Keeping in mind that we are dealing with regis-
ters composing of qubits, we can decompose a (and similarly c) into its bi-
nary representation so that a = 2n−1a1 + 2n−2a2 + · · · + 21an−1 + 20an and
|a〉 = |a1a2 · · · an〉. By denoting a = a1a2 · · · an and a/2n = 0.a1a2 · · · an we
observe that

e2πiac/2
n

= e2πia(2
n−1c1+2n−2c2+···+20cn)/2

n

= e2πi(a1a2···an)c1/2
1

e2πi(a1a2···an)c2/2
2 · · · e2πi(a1a2···an)cn/2n

= e2πi(a1···an−1.an)c1e2πi(a1···an−2.an−1an)c2 · · · e2πi(0.a1a2···an)cn . (4)

Noting that for any decimal x.y we have e2πi(x.y) = (e2πi)xe2πi(0.y) = e2πi(0.y),
we see that only the fractional part of (a1 · · · an−j .an−j+1 · · · an)cj is of any
significance in the exponent of (4).1 Hence, we find

e2πiac/2
n |c1 · · · cn〉 = e2πi(0.an)c1 |c1〉 · · · e2πi(0.a1a2···an)cn |cn〉 .

Using this decomposition we can write (3) as a product state of individual qubits,

N−1∑

c=0

e2πiac/2
n |c〉 = (|0〉+ e2πi(0.an) |1〉) · · · (|0〉+ e2πi(0.a1···an) |1〉). (5)

The quantum algorithm to implement the QFT follows directly from this fac-
torisation. The circuit for the algorithm is shown in Figure 1. The algorithm can
be written explicitly as follows [7]:

Quantum Fourier Transform
Input: The state |a〉 = |a1〉 |a2〉 · · · |an〉.
Output: The transformed state 1√

N
(|0〉+e2πi(0.an) |1〉) · · · (|0〉+e2πi(0.a1···an) |1〉).

1. For j = 1 to n, transform qubit |aj〉 as follows:

2. |aj〉 H−→ 1√
2
(|0〉+ e2πi(0.aj) |1〉).

3. For k = j + 1 to n:

4. 1√
2
(|0〉+e2πi(0.aj ···ak−1) |1〉) Rk−−→ 1√

2
(|0〉+e2πi(0.aj ···ak−1ak) |1〉) where Rk

is the unitary k-controlled phase shift:

Rk =




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2
k


 .

5. End For.
6. Reverse the order of the qubits.
7. End For.

Clearly this produces the state

1 This technique of removing factors of (e2πi)k for k ∈ N will be commonly used
throughout this paper to reduce formulae.
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|a1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi(0.a1a2···an) |1〉

|a2〉 • H · · · Rn−1 Rn |0〉+ e2πi(0.a2a3···an) |1〉
...

. . .
...

|an−1〉 • • · · · H R2 |0〉+ e2πi(0.an−1an) |1〉

|an〉 • • · · · • H |0〉+ e2πi(0.an) |1〉

Fig. 1. The standard quantum circuit for the QFT. The output normalisation factors
of 1/

√
2 and swap gates to reverse qubit order are omitted.

There are a few important notes about the QFT which should be made.
While both the DFT and the QFT act on vectors in a complex vector space,
the DFT acts on an abstract, mathematical vector, whereas the QFT acts on a
physical state which we mathematically represent by a vector in HN . The subtle
difference here is that with the classical DFT, we can read the values of all 2n

Fourier coefficients f̂(c) by simple inspection of the transformed vector. With
the QFT, the resulting state (2) embeds all 2n coefficients as amplitudes for the
2n states of an n-qubit system. However, the collapse of the superposition upon
measurement means that it is impossible to measure the amplitudes of a quantum
state without an ensemble of such states to make a statistical approximation of
the amplitudes from [8], and detecting phase differences between states is even
more difficult. Hence, the quantum state (2) contains all the information of the
classically transformed vector, but it is inaccessible to measurement. The main
use of the QFT is then as a tool to extract information embedded in the relative
amplitudes of states as opposed to determining the coefficients themselves.

Another result of this is that the efficiency of the QFT (O(n2) as opposed
to the DFT which is O(n2n)) is in some sense due to the ability to perform the
transformation and utilise the information in the phases without measuring the
state. Evidently, any algorithm requiring measurement needs exponential time
(there are 2n coefficients to measure), so even if quantum mechanics would allow
us to measure the Fourier coefficients in state (2), doing so would take O(n2n)
time: 2n coefficients, n qubits each. Making use of this embedded information
while avoiding measurement is certainly an important part of the fine art of
developing algorithms in quantum computing.

3 Initial De-quantisation Investigation

Having presented the QFT, there are some issues to be brought to light. The
decomposition of the transformed state (3) (shown in (5)) is evidently not en-
tangled, and the separability of the state would lead us to believe that the QFT
algorithm producing it could be simulated efficiently in a classical manner [9,
10], and there are certainly results towards this.

It was realised shortly after the discovery of Shor’s algorithm that the QFT
could be computed in a semiclassical manner [5]. By using classical signals re-
sulting from quantum measurements, one can perform the QFT on a state using
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classical logic and one-qubit gates (instead of the usual two-qubit controlled-
phase-shifts). This method gives the same resulting probability distribution as
the quantum algorithm, but destroys the state’s superposition as it relies on
irreversible measurements. As a result, this is only useful in an algorithm in
which the QFT directly precedes measurement. Shor’s algorithm happens to
be of exactly this nature, but this is only an initial step towards true classical
simulation.

Much more recently, classical simulations of the QFT have been studied from
the viewpoint of simulating the circuit in Figure 1 by exploiting the bubble-width
of the quantum circuit [3] and the tensor contraction model [6]. The bubble-width
approach uses a slightly modified version of the QFT circuit which is of logarith-
mic bubble-width and simulates this circuit. The tensor-contraction model also
focuses on the circuit topology, but relies on associating a tensor with each vertex
in the circuit, then cleverly contracting the tensors into a single rank-one ten-
sor. Both these methods work on separable input states, but are sampling based
forms of de-quantisation [11] in the sense that a final measurement is assumed
and an output is classically sampled from the correct (calculated) probability
distribution. This makes these de-quantisations less general than might be de-
sired and difficult to apply when the QFT is used, as it often is, as a part of
a larger quantum algorithm. This is because in these cases measurement can-
not be assumed after the QFT, and the de-quantisation must be cleverly and
non-trivially composed with a de-quantisation of the rest of the algorithm to be
applied.

Working with the circuit topology, while beneficial for some purposes, also
seems to overcomplicate matters and restrict generalisation when it comes to
classical simulation. We will explore simulations of the QFT in a different light,
more along the lines of the de-quantisation explored previously by Abbott [9] and
Calude [12] which aim to provide stronger (not sampling based) de-quantisations
when possible.

3.1 De-quantisation Overview

The idea behind this de-quantisation procedure is that qubits which are separa-
ble exhibit only superposition and interference. These properties are the result
not of non-classical features of the qubits, but rather of the two-dimensionality
of the qubits. By using classical, deterministic two-dimensional bits instead of
qubits, the same behaviour can be exhibited without the difficulties imposed by
measurement and probabilities. Not all algorithms fit within this paradigm, but
there are many which can be tackled with this approach. Algorithms which use
measurement as a fundamental part of their procedure are examples of those
which are not so well suited, and sampling-based techniques are more suitable
in these situations. Finding when these stronger de-quantisations are possible
also gives insight into the power of particular quantum algorithms [11], as this
reflects to some degree the amount the algorithm utilises the possible advan-
tages of quantum mechanics. In cases where entanglement is bounded [10], we
can use this de-quantisation procedure to produce classical algorithms which are
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as efficient as their quantum counterparts. This procedure was explicitly exam-
ined further [9, 12] when applied to the Deutsch-Jozsa problem [13, 14], where
complex numbers were used as classical two-dimensional bits. In this paper we
will apply this de-quantisation procedure to the QFT, but because the ampli-
tudes we need to represent in the QFT algorithm are complex-valued, we cannot
use complex numbers as our two-dimensional bits. There is no problem though
with simply using two-valued vectors as our classical bits, so we will employ this
procedure.

3.2 Basis-state De-quantisation

The de-quantisation for a basis-state needs only to simulate the transformation
defined in (3). As a result of the decomposition in (5), the effect of the QFT on
the jth qubit is easily seen to be

|aj〉 F2n−−→ 1√
2

(|0〉+ e2πi(0.an−j+1···an) |1〉). (6)

The difficulty in implementing this in a quantum computer is that the phase of
a qubit needs to be altered depending on the values of the other qubits without
altering them – that is why it is not helpful to express the quantum algorithm
as we have done in (6) – and the circuit of controlled-phase-shifts is required
to implement this. The information is spread over the input qubits and must
be obtained without measurement. In the classical case there are no such re-
strictions on measurement, so de-quantisation should only require directly im-
plementing (6). However, evaluating the complex phase for each of the n qubits
takes O(n) time, leading to a O(n2) procedure. This can be reduced to O(n) by
calculating each phase dependent on the previous one. To do so, let ωj be the
jth phase factor and note the following:

ωj = e2πi(0.an−j+1···an)

= e2πi(0.an−j+1)e2πi(0.an−j+2···an)/2

= (−1)an−j+1
√
ωj−1,

and
ω1 = e2πi(0.an) = (−1)an ,

where by the square-root we mean the principal root. The square-root of a
complex number such as ωj can be calculated independently of n. Specifically,
if we have s+ ti =

√
b+ di with the further requirement that for a root of unity√

b2 + d2 = 1, then [15]:

s =
1√
2

√
1 + b, t =

sgn(d)√
2

√
1− b,

where sgn(d) = d/|d| is the sign of d. The efficient de-quantised algorithm is
then the following:
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Basis-state De-quantised QFT
Input: The binary string a = a1a2 . . . an.
Output: The n transformed two-component complex vectors b1b2 . . . bn.

1. Let ω = 1
2. For j = 1 to n:
3. Set ω = (−1)an−j+1

√
ω

4. Set bj = 1√
2
×
(

1
ω

)

5. End For

This algorithm produces vectors mathematically identical to the state-vectors
in (3) and (5) produced by the QFT, but is computed classically in O(n) time
– more efficient than the quantum solution and simpler too. This is primarily
because the quantum circuit is constructed subject to the requirement of comput-
ing the QFT without any intermediate measurements. As a result, the quantum
algorithm corresponding to the circuit must conform to this too, making it more
complex than an equivalent classical algorithm need be.

A classical algorithm has the further advantage over the quantum algorithm
acting on a basis-state that measurement of the resulting state can be per-
formed at will, and any required information is easily accessible. In the quantum
algorithm only a single state can be measured, and no information about the
amplitudes (and thus the Fourier coefficients) can be determined from a sin-
gle QFT application. While this classical algorithm is no faster than the well
known fast Fourier transform (FFT) for calculating all the coefficients, it may
be advantageous if only some coefficients are required.

The ability to de-quantise the QFT acting on a basis state is not particularly
surprising. This is equivalent to the classical DFT acting on a vector with only
one non-zero component, producing a fairly trivial and easily computed output.
However, this highlights a little more deeply some common misconceptions about
the QFT. Because of the linear, unitary evolution of quantum mechanics, the
action of the QFT on a basis state shown in (3) is often taken as the definition
of the QFT. While this suffices as the definition for the purposes of the quantum
algorithm, it is important not to forget that the actual definition of the QFT is
that given in (2). When considering classical simulations of the QFT this is even
more important, as the action of the QFT on a basis state and the corresponding
circuit no longer immediately allow us to compute the complete QFT; indeed
it would take 2n iterations of a classical algorithm simulating the basis state
behaviour to compute the complete QFT.

4 Product-state De-quantisation

Here we consider the possibility of extending the de-quantisation to work on a
wider range of input states, resulting in a less trivial de-quantisation. If the input
state is entangled then it is clear that the de-quantisation is not easily extended,
as the method used for the basis-state algorithm relied on the separability of the
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input. In such a situation, any de-quantisation attempt would need to involve a
different method and work directly from the QFT definition, (2).

It is not immediately clear that the basis-state de-quantisation, which is
based on (3), could not be extended to work on arbitrary separable input states.
This idea is strengthened by the fact that we used the single-qubit formula (6)
to perform the basis-state de-quantisation. However, this implicitly relies on
the other qubits in the input state having a definite value, but in the general
separable input case this is not necessarily the case. Indeed, the QFT is readily
seen to entangle separable input states, e.g:

|φ〉 =
1√
2
|0〉 (|0〉+ |1〉) F4−→ 1√

2

(
|00〉+

1 + i

2
|01〉+

1− i
2
|11〉

)
.

A de-quantisation for arbitrary separable input states is thus not possible in the
same way as it was for basis states. However, we will investigate the entangling
power of the QFT in order to determine the set of states which are not entangled
by the QFT, and present a de-quantised algorithm which works for such states.

4.1 General Separability Conditions

As in the entanglement investigation of the Deutsch-Jozsa problem [9], we will
make use of the separability conditions for a qubit state presented in [16], al-
though unlike the Deutsch-Jozsa problem our situation permits the possibility
of states with zero-valued amplitudes, complicating the conditions somewhat.
The key definitions and theorems we require to determine the separability of
a state will be briefly presented, while [16] should be consulted for proofs and
discussion.

Definition 1. The amplitude abstraction function A : HN → {0, 1}N is a

function which, when applied to a state |ψN 〉 =
∑N−1
i=0 ci |i〉, yields a bit string

x = x0x1 . . . xN−1 such that for 0 ≤ i ≤ N − 1, xi = 0 if ci = 0 and xi = 1
otherwise.

Definition 2. The set BN ⊂ {0, 1}N of well-formed bit strings of length N =
2n is defined recursively as

B2 = {01, 10, 11}, B2N = {0Nx, x0N , xx | x ∈ BN}.

Definition 3. The set of well-formed states is the set

VN = {|ψN 〉 ∈ HN | A (|ψN 〉) ∈ BN}.

Intuitively, a state is well-formed if the zero-valued amplitudes are distributed
such that it is a candidate to be separable; if a state is not well-formed it is guar-
anteed to be entangled. In order to determine if a well-formed state is separable,
we require two further definitions.
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Definition 4. For each set of well-formed states VN , there exists a family of
zero deletion functions {DK : VN → HK | K = 2k, 1 ≤ k ≤ n}, such that for a

well-formed state |ψN 〉 =
∑N−1
i=0 ci |i〉 ∈ VN , DK(|ψN 〉) = |ψ′K〉 =

∑K−1
j=0 c′j |j〉,

A (|ψ′K〉) = 1K , and c′j is the jth non-zero amplitude of |ψN 〉.

Definition 5. A state |ψN 〉 =
∑N−1
i=0 ci |i〉 is pair product invariant if and only

if for all j ∈ {2, . . . , n} and all i ∈ {0, . . . , J/2 − 1} cicJ−i−1 = dj, where each
dj is a constant and J = 2j.

As a concrete example to help understand pair product invariance, consider the
cases of n = 2 and n = 3. For n = 2, |ψ4〉 =

∑3
i=0 ci |i〉 is pair product invariant

if the well known condition c0c3 = c1c2 holds. For n = 3, |ψ8〉 =
∑7
i=0 ci |i〉, we

require this same condition, c0c3 = c1c2, as well as the further condition that
c0c7 = c1c6 = c2c5 = c3c4, to hold.

The following theorem from [16] can be used to determine if an arbitrary n-
qubit state is separable or not by checking the non-zero amplitudes of the state
vector are pair product invariant.

Theorem 1. Let |ψN 〉 be an n-qubit state for which the bit string A (|ψN 〉)
contains K ones. Then |ψN 〉 is separable if and only if |ψN 〉 ∈ VN and DK (|ψN 〉)
is pair product invariant.

4.2 QFT Separability Conditions

We wish to consider the case that a separable n-qubit input state remains sepa-
rable after the QFT has been applied to it. In order to do so, first let us consider
the action of the QFT on the separable input state

|ψN 〉 =

(
α1

β1

)
⊗
(
α2

β2

)
⊗ · · · ⊗

(
αn
βn

)
= (f(0), f(1), . . . , f(N − 1))

T
.

Note that each f(c) can be written as a product of amplitudes as f(c) =
a1a2 . . . an, where each ai ∈ {αi, βi}. We will use the notation fj(c) to mean
ajaj+1 . . . an, and thus f(c) = f1(c) = a1f2(c) etc. Because of the structure
of the tensor product, for 0 < j < n and c < 2n−j , fj(c) = αjfj+1(c) and

fj(2
n−j + c) = βjfj+1(c). The amplitudes of the transformed state |ψ̂N 〉 =

(f̂(0), f̂(1), . . . , f̂(N − 1))T are given by (1), which can, for a separable input,
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be rewritten in the more useful form

f̂(c) =
1√
N

N−1∑

a=0

e2πiac/Nf1(a)

=
1√
N
α1

N/2−1∑

a=0

e2πiac/Nf2(a) + β1

N/2−1∑

a=0

e2πi(N/2+a)c/Nf2(a)

=
1√
N

(α1 + eπicβ1)

N/2−1∑

a=0

e2πiac/Nf2(a)

=
1√
N

(α1 + eπicβ1)(α2 + eπic/2β2) · · · (αn + eπic/2
n−1

βn)

=
1√
N

n∏

j=1

(αj + eπic/2
j−1

βj). (7)

This factorised form of the transformed Fourier coefficients allows us to de-
termine conditions for when the transformed state is well-formed by giving re-
strictions on the distribution of zeros amongst the amplitudes, a result of the fact
that f̂(c) = 0 if and only if one of the factors in (7) is zero, and this is a significant
step towards determining if a state is separable, and thus de-quantisable.

Lemma 1. Let |ψN 〉 be a separable input state and |ψ̂N 〉 = FN |ψN 〉 be the
transformed state. Then the following three conditions are equivalent:

(i) |ψ̂N 〉 ∈ VN , i.e. the transformed state is well-formed.
(ii) There exists a k ≤ n such that the set

Cj =
{
c | ∀l ≤ j

(
αl + eπic/2

l−1

βl = 0 ⇐⇒ l = j
)}

is non-empty for all 1 ≤ j ≤ k and empty for k < j ≤ n.

(iii) (∃0 ≤ k ≤ n)(∃a1 . . . ak ∈ {0, 1}k)
(
∀1 ≤ j ≤ k

[
αj = eπi

∑j
p=1 ap/2

j−p
βj

]

∧(∀ak+1 . . . an ∈ {0, 1}n−k)(∀n ≥ j > k)
[
αj 6= eπi

∑j
p=1 ap/2

j−p
βj

])
.

Proof. (i) =⇒ (ii): For any x ∈ BN , Definition 2 ensures that the number
of ones in x, #1(x) = 2m for some m ≤ n, and hence the number of zeros,
#0(x) = 2n − 2m =

∑n−m
l=1 2n−l. If |Cj | 6= 0 then there exists a c′ ∈ Cj such that

c′ < 2j and f̂(c′) = 0. But we must also have f̂(m2j+c′) = 0 for 0 ≤ m ≤ 2n−j−1
and hence |Cj | = 2n−j . Also note that each Cj is disjoint by construction, and

f̂(c) = 0 =⇒ c ∈ Cj for some j. For a well-formed state we thus require that
for some m,

#0

(
A(|ψ̂N 〉)

)
=
n−m∑

l=1

2n−l =
n∑

j=1

|Cj | =
∑

j:|Cj |6=0

2n−j ,
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which is satisfied if and only if C1 . . . Ck are non-empty and Ck+1 . . . Cn are empty,
with k = n−m.

(ii) =⇒ (i): In the first K = 2k amplitudes, 2k−n
∑
j≤k |Cj | =

∑k
j=1 2k−j =

K−1 of them are zero. Let f̂(c′) be the single one of these non-zero amplitudes.

Then, by symmetry, f̂(dK+c′) 6= 0 for 0 ≤ d ≤ 2n−k−1. Thus,A(|ψ̂N 〉) = x2
n−k

,
where x ∈ {0, 1}K and #1(x) = 1. Any such x is clearly well-formed, and thus

the state |ψ̂N 〉 is also well-formed.

(ii) ⇐⇒ (iii): Note that
∑j
p=1 ap/2

j−p = 1
2j−1

∑j
p=1 ap2

p−1, and we will

proceed by induction for j ≤ k. Since α1 = eπia1β1 ⇐⇒ α1 + eπi(1+a1)β1 = 0,
such an a1 ∈ {0, 1} exists if and only if |C1| 6= 0. Now, assume that for all

1 ≤ l < j ≤ k, αl = e
πi

2l−1

∑l
p=1 ap2

p−1

βl and |Cl| 6= 0. Then

αj = e
πi

2j−1

∑j
p=1 ap2

p−1

βj ⇐⇒ αj + e
πi

2j−1 (2j−1+
∑j
p=1 ap2

p−1)βj = 0,

so such a bit string a1 . . . aj exists if and only if there is a c such that αj +

eπic/2
j−1

βj = 0 (in fact c = (2j−1+
∑j
p=1 ap2

p−1)mod 2j). Further, the inductive
hypothesis ensures that for all l < j,

αl + eπic/2
l−1

βl = αl + e
πi

2l−1 (2j−1+
∑j
p=1 ap2

p−1)βl

= αl + eπi
2j−1

2l−1 e
πi

2l−1 (
∑l
p=1 ap2

p−1)βl

= αl + e
πi

2l−1 (
∑l
p=1 ap2

p−1)βl

6= αl − e
πi

2l−1 (
∑l
p=1 ap2

p−1)βl

= 0,

thus such a bit string a1 . . . aj exists if and only if |Cj | 6= 0. Hence, Cj is non-

empty for j ≤ k if and only if ∃a1 . . . ak∀1 ≤ j ≤ k(αj = eπi
∑j
p=1 ap/2

j−p
βj). The

condition that for j > k and all ak+1 . . . aj ∈ {0, 1}j−k αj 6= eπi
∑j
p=1 ap/2

j−p
βj

is equivalent to |Cj | = 0, since |Cj | = 0 requires that there exists a c such that

αj + eπic/2
j−1

βj = 0 and αk + eπic/2
k−1

βk 6= 0. The only c < 2k which satisfies

this is c =
∑k
p=1 ap2

p−1, so by symmetry any c which satisfies this must be able

to be written as c =
∑j
p=1 ap2

p−1 for some ak+1 . . . aj . Hence we see that ((ii))
and ((iii)) are equivalent. ut

Condition ((ii)) of Lemma 1 corresponds to a more intuitive requirement for
the transformed state to be well-formed. It says that for each j ≥ 1 there must
be a value of c such that f̂(c) = 0 with the jth term in (7) equal to zero and
the first j − 1 terms non-zero. If for some k there is no c satisfying this con-
dition, then there must not be any c satisfying them for j > k either, or the
state will not be well-formed. Condition ((iii)) translates this notion into formal
requirements about the relationships between the components of the untrans-
formed input state components αi, βi which will ensure the transformed state
will satisfy condition ((ii)) and thus be well-formed.
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Lemma 1 gives us conditions for when the first condition of Theorem 1 is
satisfied and it remains to determine which separable input states also satisfy
the condition that DZ(|ψ̂N 〉), with Z =

∑k
l=1 2n−l, is pair product invariant.

The amplitudes which are deleted by the function DZ are the Z values of c
which are in Cj for some j.

Lemma 2. Let |ψN 〉 be a separable input state for which the transformed state

|ψ̂N 〉 is well-formed, i.e. |ψN 〉 satisfies the conditions of Lemma 1. Let k be as

in Lemma 1 part ((iii)) and Z =
∑k
l=1 2n−l. Then DZ(|ψ̂N 〉) is pair product

invariant if and only if for all j > k + 1, αjβj = 0, i.e. the (k + 1)th qubit
can be in an arbitrary superposition, and qubits k + 2 to n must not be in a
superposition, although arbitrary phase is permitted.

Proof. Let c′ be the smallest c such that f̂(c) 6= 0, and let n′ = n − k, N ′ =

2n
′
,K = 2k. By symmetry, the N ′ non-zero amplitudes are f̂(dK + c′) for

0 ≤ d ≤ N ′−1. The zero-deleted state is thus DZ(|ψ̂N 〉) = (f̂ ′(0), . . . , f̂ ′(N ′−1)),

where f̂ ′(d) = f̂(dK + c′). By breaking up the sum in (7) we see that each of
these amplitudes is of the form:

f̂ ′(d) =
1√
N




k∏

l=1

(αl + eπi(dK+c′)/2l−1

βl)





n′∏

l=1

(αk+l + eπi(d+c
′/K)/2l−1

βk+l)




= Γ
n′∏

l=1

(αk+l + e2πi(d+δ)/Lβk+l), (8)

where L = 2l, δ = c′/K is independent of d, as also is Γ = 1√
N

∏k
l=1(αl +

e(2πi)
dK/L

e2πic
′/Lβl) 6= 0 (recall k ≥ l so dK/L is a positive integer). For all 1 <

j ≤ n′, 0 ≤ m1 < m2 < J/2, pair product invariance (recall Definition 5) requires

that both f̂ ′(m1)f̂ ′(J −m1 − 1) = f̂ ′(m2)f̂ ′(J −m2 − 1) and f̂ ′(m1)f̂ ′(J/2 −
m1 − 1) = f̂ ′(m2)f̂ ′(J/2−m2 − 1). Since each f̂ ′(d) 6= 0, we require

f̂ ′(J −m2 − 1)f̂ ′(J/2−m1 − 1) = f̂ ′(J −m1 − 1)f̂ ′(J/2−m2 − 1). (9)

Symmetry means the left- and right-hand sides both contain common factors of
Γ 2, as well as j−1 factors from the product (8) for each transformed amplitude,
due to the fact that e2πiJ/L = eπiJ/L for l < j. Thus the condition (9) simplifies
to

n′∏

l=j

(αk+l + e2πi(J−m2−1+δ)/Lβk+l)(αk+l + e2πi(J/2−m1−1+δ)/Lβk+l)

=
n′∏

l=j

(αk+l + e2πi(J−m1−1+δ)/Lβk+l)(αk+l + e2πi(J/2−m2−1+δ)/Lβk+l), (10)

which holds for all j,m1,m2 if and only if DZ(|ψ̂N 〉) is pair product invariant.
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We now show by induction that (10) is satisfied if and only if for all 1 < j ≤
n′, αk+jβk+j = 0. Firstly, consider the case that j = n′. The products in (10)
each contain only one factor, and expanding leaves only the cross-terms, and the
condition simplifies to

αnβn(e2πi(N
′−m2)/N

′
+e2πi(N

′/2−m1)/N
′
)=αnβn(e2πi(N

′−m1)/N
′
+e2πi(N

′/2−m2)/N
′
).

(11)

Since this must hold for all distinct m1,m2 only the trivial solution is possible,
hence αnβn = 0.

Now, assume that αk+lβk+l = 0 for l = n′, . . . , j + 1, j > 1, and consider
αk+j , βk+j . The products in (10) run from j to n′, but all factors for l > j cancel
when the pairs on each side are expanded since, by the inductive hypothesis,
αk+lβk+l = 0 for these terms. The condition then reduces to a single factor and
we find αk+jβk+j = 0 exactly as in (11).

Hence, the transformed state is pair product invariant if and only if for all
1 < j ≤ n′ we have αk+jβk+j = 0. ut

Theorem 2. Given a separable input state |ψN 〉, the transformed state |ψ̂N 〉 is
separable if and only if

(∃0 ≤ k ≤ n)(∃a1 . . . ak ∈ {0, 1}k)
(
∀1 ≤ j ≤ k

[
αj = eπi

∑j
l=1 al/2

j−l
βj

]

∧
(
αk+1 6= ±eπi

∑k
l=1 al/2

k−l+1

βk+1

)
∧ (∀n ≥ j > k + 1) [αjβj = 0]

)
.

Proof. The proof follows directly from Lemmata 1 and 2. ut
Theorem 2 allows us to determine if a given separable state |ψN 〉 will be

entangled or not by the QFT. While the set of such states which are not entangled
by the QFT is infinite, the conditions are still highly restrictive, and there is
only one qubit that can ever truly be in an arbitrary superposition. However, the
conditions between each αi and βi are relative, so separability of the transformed
state is invariant under phase rotations of individual qubits. These conditions,
while restrictive, could be of value in developing new algorithms which make use
of the QFT and give a strong insight into the entangling power of the QFT.

4.3 Product-state De-quantisation

For the set of states which are not entangled by the QFT, we can use the con-
ditions of Theorem 2 to extend the basis-state de-quantisation. Let k be as in
Theorem 2. Let r =

∑n−k
j=2,αk+j=0 2−(k+j) and ω = e2πir be the coefficient of

(αk+2 +βk+2) · · · (αn+βn) in f̂(1). The de-quantised algorithm for states which
are not entangled by the QFT is the following (b[x] is the xth component of b
starting from 0):

Separable De-quantised QFT
Input: The n two-component complex vectors b1b2 . . . bn.
Output: The n transformed vectors b̂1b̂2 . . . b̂n.
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1. Calculate k, a1 . . . ak as in Theorem 2
2. Calculate r, ω
3. For j = 1 to k + 1:

4. Set b̂n−j+1 = 1√
2
×
(
αj + eπi

∑j−1
l=1 al/2

j−l
βj

αj − eπi
∑j−1
l=1 al/2

j−l
βj

)

5. End For
6. For j = 1 to n− k − 1:
7. Let l = n− j + 1

8. Set b̂j = 1√
2
×
(
αl + βl
αl + βl

)

9. End For
10. For j = 1 to n:
11. Set b̂n−j+1[1] = ωb̂n−j+1[1]
12. Set ω = ω2

13. End For

Theorem 3. The Separable De-quantised QFT algorithm correctly computes
the transformed n-qubit state |ψ̂N 〉 = FN |ψN 〉, where |ψN 〉 is separable and the

cth component of |ψ̂N 〉 is described by (7), and does so in O(n) time.

Proof. The values of k and a1 . . . ak can be found readily in O(n) time by just
checking each pair αj , βj too see which option, aj = 0, 1, makes the first condition
of Theorem 2 true, and setting aj accordingly, until neither is true, at which point
k is found. Also, r and ω are efficiently found by direct calculation. It remains
to verify that the algorithm correctly produces the state

f̂(c) =
1√
N

n∏

j=1

(αj + eπic/2
j−1

βj)

=
1√
N



k+1∏

j=1

(αj + eπic/2
j−1

βj)






n∏

j=k+2

(αj + eπic/2
j−1

βj)


 .

The algorithm calculates the amplitudes for each qubit, so if we let the n-bit
binary expansion of c be cn . . . c1 we have

f̂(c) = b̂1[cn] · b̂2[cn−1] · · · b̂n[c1]

=
ωc√
N



k+1∏

j=1

(αj + (−1)cjeπi
∑j−1
l=1 al/2

j−l
βj)






n∏

j=k+2

(αj + βj)




=
ωc√
N



k+1∏

j=1

(αj + e
πi

2j−1 (cj2
j−1+

∑j−1
l=1 al2

l−1)βj)






n∏

j=k+2

(αj + βj)


 . (12)

Note that, since αj = 0 or βj = 0,

n∏

j=k+2

(αj + eπic/2
j−1

βj) = e2πicr
n∏

j=k+2

(αj + βj) = ωc
n∏

j=k+2

(αj + βj),
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so our algorithm produces this term correctly.
Since the output state is separable, the conditions of Theorem 2 must be

satisfied and only one out of the first K amplitudes is non-zero. This amplitude
is the one with c′ =

∑k
l=1 al2

l−1, and by symmetry all the other non-zero am-
plitudes occur at c = c′ + d2n−k for 0 ≤ d ≤ K − 1. To verify this, note that for
all j ≤ k, we have

αj + e
πi

2j−1

∑k
l=1 al2

l−1

βj = αj + e
πi

2j−1

∑j
l=1 al2

l−1

βj 6= 0,

and hence f̂(c′) 6= 0. From (12) it is clear that f̂(c) is calculated correctly for
these values of c. For all other values of c which have c1 . . . cn 6= a1 . . . an, let m
be the smallest i ≤ n such that ci 6= ai. Then we have

αm + e
πi

2m−1

∑n
l=1 cl2

l−1

βm = αm − e
πi

2m−1

∑m
l=1 al2

l−1

βm = 0,

and hence f̂(c) is correctly produced for all c.
The algorithm is also clearly seen to require O(n) time, and thus the proof

is completed. ut

This algorithm has all the advantages of the basis-state de-quantised al-
gorithm, but operates on a much larger ranger of input states, making it a
much more powerful de-quantisation. Importantly, just like the basis-state de-
quantisation, it is actually more efficient than the QFT algorithm. While this
algorithm will not work on all separable input states like the tensor-contraction
simulation in [6], it is a stronger de-quantisation in the sense that it gives a com-
plete description of the output state as opposed to the probability of measuring a
particular value, and is trivial to use as a subroutine in a larger de-quantisation.

5 Discussion

The ability to de-quantise the QFT algorithm brings up some interesting points.
The two de-quantisations presented in this paper compute the Fourier trans-
form on a restricted set of input states. On the other hand the standard QFT
algorithm computes the Fourier transform on arbitrary separable or entangled
input states. In fact, the standard QFT algorithm is a quantum implementa-
tion of the basis-state algorithm, but the linearity of quantum mechanics en-
sures that arbitrary input states are transformed by this simple algorithm. De-
quantisation techniques such as the one presented, as well as those of [3, 4, 6],
all have to efficiently simulate the linearity that is inherit in the quantum me-
chanical medium. The de-quantisations in this paper highlight the important
distinction that should be made between the quantum Fourier transform and
the quantum algorithm computing it. The QFT is a unitary transformation of
an n-qubit state, while the QFT algorithm is a recipe for creating a sequence
of local gates which computes the QFT on a given state. While these two no-
tions are equivalent in quantum computation, when we depart from quantum
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mechanics this is no longer the case, and the de-quantised algorithm does not
suffice to compute the complete QFT.

It is interesting to note that both de-quantisations presented in this paper
run in O(n) time, more efficient than the O(n2) of the quantum algorithm. This
is due to the restrictions imposed by measurement no longer being present when
we develop a classical counterpart. This increase in efficiency is something not
seen in other de-quantisations of the QFT which are based on the quantum
circuit topology, and thus inherently and perhaps unnecessarily work within
the restrictions the quantum circuit was designed under. The Separable De-
quantised QFT algorithm computes the QFT on a large number of input states
and it remains to be seen if this de-quantised algorithm can be applied to existing
or new quantum algorithms to produce further de-quantisations. The fact that
both the input and output states are separable also ensures the existence of a
de-quantised inverse algorithm too, which is of practical significance.

Another issue worth noting is that we must be careful to consider the com-
plexity involved in manipulating the complex amplitudes in a state-vector when
performing de-quantisation. While it did not contribute to the complexity of
the de-quantised algorithms presented in this paper, attention had to be paid to
make sure this was the case, as this would not have been so if we implemented the
directly obvious algorithm. In quantum computation, however, the amplitudes
are just our representation of a property of physical states. It is these physical
states, rather than the amplitudes, which are altered by unitary transformations,
and as a result we observe the amplitudes changing. This reiterates the need for
care when de-quantising, as the amplitudes have no a priori reason to be easily
calculated, or computable at all for that matter.

6 Summary

We have shown that the quantum algorithm computing the QFT can be de-
quantised into a classical algorithm which is more efficient and in many senses
simpler than the quantum algorithm, primarily because the need to avoid mea-
surement of the system is no longer present. However, the direct de-quantisation
of the QFT algorithm leads to a classical algorithm which only acts on a basis-
state. This difference is due to the linearity of quantum computation ensuring a
basis-state algorithm computes the complete QFT, highlighting this linearity as
a key feature in the power of the QFT. By examining the entangling power of
the QFT we devised conditions for when the QFT leaves a separable state un-
entangled, and showed that this separability is invariant under phase-rotation of
the input qubits. We extended our de-quantisation to work on this set of states
without any loss of efficiency.

This de-quantisation of the QFT serves not only to illustrate more deeply the
nature of the QFT, but also provides a useful tool for possibly de-quantising al-
gorithms using the QFT with very little effort. Further, the techniques involved
can help identify de-quantisable algorithms more easily, as well as aiding the
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creation of new quantum algorithms and subroutines by deepening our under-
standing of what is needed to make a quantum algorithm so useful.
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Abstract. The aim of this talk is to give a logical introduction to rela-
tivity theory and relativistic hypercomputation. The talk is designed to
give insight (for the logically minded) to these subjects.
We build up relativity theories (special, general, cosmological) as theories
in the sense of mathematical logic. We intend to provide an easily under-
standable, logic based introduction to these theories. We also intend to
give a logical insight to the most exotic and recent developments relevant
to relativistic hypercomputation ranging from the recently discovered ac-
celeration of the expanding universe through wormholes, timewarps and
observational evidence for huge rotating black holes.
We axiomatize relativity theories within pure first-order logic using sim-
ple, comprehensible and transparent basic assumptions (axioms). We aim
to prove the surprising predictions (theorems) of relativity theories from
a few convincing axioms and to investigate the relationship between the
axioms and the theorems.
In physics we do not know whether an axiom is true or not, we just
presume so. Therefore, the role of the axioms (the role of statements
that we assume without proofs) in physics is more fundamental than in
mathematics. That is why we aim to formulate simple, logically trans-
parent and intuitively convincing axioms. All the surprising or unusual
predictions of a physical theory should be provable as theorems and not
assumed as axioms. For example, the prediction “no observer can move
faster than light” is a theorem in our approach and not an axiom.
There are many examples showing the benefits of using axiomatic method
in the foundations of mathematics. That motivates our Hungarian school
investigating logic and relativity to apply this method in the foundations
of relativity theories. In any foundational work one should avoid tacit
assumptions. First-order logic will be used as a device for forcing us to
make all tacit assumptions explicit.
A novelty in our approach is that we try to keep the transition from spe-
cial relativity to general relativity logically transparent and illuminating.
We are going to “derive” the axioms of general relativity from that of
special relativity in two natural steps. In the first step we extend special
relativity of inertial observers to accelerated observers. This step pro-
vides us a theory which is strong enough to prove theorems even about
gravitation via Einstein’s Principle of Equivalence. In the second step we
eliminate the difference between inertial and noninertial observers in the
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level of axioms. This second natural step provides us a first-order logic
axiomatization of general relativity suitable for further extensions and
logical analysis.

In this talk we will put an emphasis on the spacetime aspects of relativity.
At the same time, we indicate how the theories extend to the direction
of covering relativistic dynamics including Einstein’s famous insight E =
mc2.

Logical axiomatization of physics especially that of relativity theory is
not at all a new idea, among others, it goes back to such leading mathe-
maticians and philosophers as Hilbert, Gödel, Tarski, Reichenbach, Car-
nap, Suppes and Friedman. Our aims go beyond these approaches, be-
cause we not only axiomatize relativity theories, but also analyze their
logical and conceptual structure.

Some of the questions we study to clarify the logical structure of relativity
theories are:

– What is believed and why?

– Which axioms are responsible for certain predictions?

– What happens if we discard some axioms?

– Can we change the axioms and at what price?

We will also explore such frontier areas of cutting-edge science as, e.g.,
exploring the (remote) possibility of time travel via relativistic wormholes
as suggested in papers of Thorne, Novikov, Visser, Yurtsever and others
(e.g., “Timewarps”). We will touch upon the geometry of wormholes or
timewarps (utilizing the firm logical foundation of our theory). We note
that wormholes are highly relevant for hypercomputing, c.f., [4].

Among others, logical analysis makes relativity theory modular: we can
replace some axioms with other ones, and our logical machinery ensures
that we can continue working in the modified theory. This modularity
might come handy, e.g., when we want to extend general relativity and
quantum theory to a unified theory of quantum gravity.
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1 Introduction

Consider the classical model of a Turing machine with an oracle. The oracle
is a one step external consultation device. The oracle may contain either non-
computable information, or computable information provided just to speed up
the computations of the Turing machine. Moreover, the oracle is a set, i.e. a
language, e.g. over the input alphabet of the Turing machine. 4

In this paper we will consider the abstract experimenter (e.g. the experimen-
tal physicist) as a Turing machine and the abstract experiment of measuring
a physical quantity (using a specified physical apparatus) as an oracle to the
Turing machine. The algorithm running in the Turing machine abstracts the
experimental method of measurement (encoding the recursive structure of ex-
perimental actions) chosen by the experimenter.

It is standard to consider that to measure a real number µ,5 e.g. the value of
a physical quantity, the experimenter (now the Turing machine) should proceed
by approximations. Thus, besides the value of µ, we will consider dyadic rational
approximations (denoted by finite binary strings), and a procedure to measure
µ proved to be universal.

What is intended to be measured? It can be a distance between two points,
or an electric charge in a field, or the mass of a particle, etc. Measurable numbers
were first considered a scientific enterprise by Geroch and Hartle in their famous
paper [13], where they introduce the concept:

We propose, in parallel with the notion of a computable number in
mathematics, that of a measurable number in a physical theory. The ques-

? Corresponding author.
4 By saying that a set is to be a language we are also emphasising that it is countable.
5 Real numbers make part of the general setting in measurement theory.
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tion of whether there exists an algorithm for implementing a theory may
then be formulated more precisely as the question of whether the measur-
able numbers of the theory are computable.

Measurement is a scientific activity supported by a full theory developed since
the beginning of the last century as a chapter of mathematical logic (see [11, 12,
15, 17, 4]), which is unexpectedly similar to oracle consultation but exhibiting
new features in complexity theory. On the other side, scientific activity seen as
algorithm running in a Turing machine is also not new in computational learning
theory (see [16]).

Let us consider a very simple concrete example where the measurement of
inertial mass is considered (see [6] for the complete case study): if we project
a particle of known mass towards a particle of unknown mass, then the first
will be reflected if its mass is less than the unknown mass, and it is projected
forward together with the particle of unknown mass if its mass is greater than
the unknown mass. Using binary search we are allowed, in principle, to read bit
by bit the value of the unknown mass.6 But we find a novelty: if we want to read
the bits of µ using such a method, then the time needed for a single experiment
is

∆t ∼
∣∣∣∣

1

m− µ

∣∣∣∣ ,

where m is the mass of the proof particle in that single experiment. This means
that the time needed for a single experiment to read the bit i of the mass µ,
using the proof particle of mass m of size i (number of its bits) is in the best
case exponential in i.

This ideal experiment tells us that, if the abstract oracle to a Turing machine
is to be replaced by an abstract physical measurement, then the time needed to
consult the oracle is not any more a single step of computation but a number
of time steps that will depend on the size of the query. Provided with such
mathematical constructions, the main complexity classes involved in such com-
putations, e.g. for the polynomial time case, change and deserve to be studied
(see [6, 6]). New interesting classes emerge, namely those involved in the study of
complexity of hybrid systems and analogue-digital systems such as mirror sys-
tems and neural nets (see [9, 18]). To sum up, a first differentiation of physical
oracles from classical oracles is a cost function T with a signature of a complex-
ity function, the number of steps of busy waiting of the Turing machine as a
function of the size of the query.

In the physical world, it is not conceivable that a proof particle of mass m
can be set with infinite precision. If we consider that precision is not infinite but
unbounded, i.e., as big as we need, than we can continue reading the bits of µ.
The same complexity classes are defined. But suppose that we reject unbounded

6 Note that this activity of measuring inertial mass is not that much different from the
activity of measuring mass using a balance scale and a toolbox of standard weights.
It is only more simple to describe from a point of view of the dynamics involved in
finding the unknown value.

76



precision to favor the most common and realistic a priori fixed precision criterion.
Then we prove that, using stochastic methods, we are still able to read the bits of
µ. To make our claim rigorous, we say that the lack of precision in measurement
will not constitute an obstacle to the reading of the bits of µ.

Oracles should be regarded as information with possible error that take time
to consult (see [1, 2, 5]).

However, the Turing machine imposes limitations to what is effectively acces-
sible to physical observations. E.g., not all masses are measurable. Not due to the
limitations in measurements where experimental errors occur, not because quan-
tum phenomena puts a limit to measurements, but because of a more essential
internal limitation of physicists conceived as Turing machines. The mathematics
of computation theory does not allow the reading of bits of physical quantities
beyond a certain limit: even if they could be measured with infinite precision by
physics, they could not be measured by physical-mathematical reasons.

2 Reflexions

The measurement of a distance (SME for brief) taught us that oracles should
be regarded as information with possible error (see [1, 2]). The measurement of
a mass (STME for brief) taught us that oracles may take time to consult, may
have a cost (a first experiment in measuring mass, the CME is analysed in [6]).

The reaction of the reader towards the gedankenexperiment of measuring
mass considered in the preceding section might well be of discomfort: such de-
vices can not be built. But the reader should notice that this reaction is a
consequence of a diffuse philosophy that considers the Turing machine an object
of a different kind: both the abstract physical machine and the Turing machine
are non-realizable objects. For the implementation of the Turing machine the
engineer would need either unbounded space and a physical support structure,
or unbounded precision in some finite interval to code for the contents of the
tape; each time the size of the written word in the working tape increases by
one symbol, the precision needed will increase. The experiment can be set up to
some precision in the same way that the Turing machine can be implemented
up to some accuracy.

Knowing that both objects, the Turing machine and the measurement device,
are of the same ideal nature, the reader may wonder what is the purpose of such
an experiment from the computational point of view. The physical experiment
exhibits the character of an oracle, an external device to the Turing machine. It
gives to the concept of an oracle a new epistemology: the oracle is not any more
an abstract entity, but an abstract physical entity; the oracle is not any more
a one step transition of the Turing machine, but a device that needs time to
be consulted; the oracle is not any more a relativization mechanism, but it has
physical content: it can only be consulted up to some accuracy; moreover the
degrees of accuracy in the consultation of the oracle can be studied. For some,
this setting can be seen as that of a computer connected to an analogue device.7

7 A kind of hybrid system.
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As emergent result, we are led to the conclusion that infinite precision and
unbounded precision are of the same ontological nature, as the computational
process has taught us for decades. Different experiments imply a conclusion
similar to that of the work on neural nets in the nineties ([18]): to compute up
to time t,8 only O(f(t)) bits of the unknown are needed, where f is a function
depending on the undergoing experiment. As we will see, this result is more about
the nature of numbers and arithmetic than about physics or neurodynamics.

Of relevance is the objective of such construction of a Turing machine con-
nected with an abstract physical device (that can not be built) from the (physi-
cal) sciences point of view. The idea is also the same as a Turing machine is for
computation science: to be able to describe limiting results and negative results.
The limiting results are obtained in the perfect Platonic world. In the same way,
limiting results of a computer are not about our computers, but about the limit
of a computer. The same happens with physical oracles. The experiments allow
us to study the limiting results on measurement.

It seems that the same methods allow us to inspect the concept of measure-
ment in the physical sciences. Since measurement is made in most situations
by comparisons between observables, what we describe applies not only to the
measurement of mass, but also to the measurement of a electric charge or to the
measurement of a magnetic charge.

Note that the apparent counterintuitive theoretical gedankenexperiment of
increasing accuracy towards infinite precision is part of measurement theory in
the context of a physical theory. In this respect, Geroch and Hartle write in [13]:

The notion “measurable” involves a mix of natural phenomena and
the theory by which we describe those phenomena. Imagine that one had
access to experiments in the physical world, but lacked any physical theory
whatsoever. Then no number w could be shown to be measurable, for, to
demonstrate experimentally that a given instruction set shows w measur-
able would require repeating the experiment an infinite number of times,
for a succession of εs approaching zero. One could not even demonstrate
that a given instruction set shows measurability of any number at all,
for it could turn out that, as ε is made smaller, the resulting sequence of
experimentally determined rationals simply fails to converge. It is only a
theory that can guarantee otherwise.

3 Looking Closer to the Scattering Experiment

We have studied the elastic collision between two particles of varying mass, con-
sidering them to be point masses interacting by contact (see [6]). Let us now
prove that the same behaviour, namely in the protocol between the Turing ma-
chine and the apparatus, characterizes the general scatter machine, where scat-
terer particles with negative electric charge scatter firing particles with negative

8 E.g., to simulate the physical system up to time t.
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electrical charge too. This is a more conventional settlement of the scattering
experiment.

Collisions usually involve projecting particles towards other particles that are
at rest in the system of the laboratory. Let µ denote the mass of the particles
at rest in the system of the laboratory and m denote the mass of the particles
projected, dyadic rationals used as proof particles. Let θm be the deflexion angle
of a firing particle in the system of the laboratory.
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Fig. 1. Scattering a particle: view from the system of reference of the center of mass.
When the particle of mass m is fired, the particle of unknown mass µ is at rest in the
system of reference of the laboratory.

1. Suppose that m < µ, i.e., the bombarding particle is lighter than the particle
that is being struck. Then the maximum angle of scattering θm is always π.

2. Suppose that m > µ. In this case we can easily see that the maximum of θm
is less than π/2.

3. Suppose that m = µ. The maximum of θm is π/2.

There is an abrupt discontinuity in the form of the cross section, since for
m = µ the maximum value of θm is π/2, while for m very slightly less than
µ, the maximum value of θm suddenly jumps to π. This is not a real physical
discontinuity because the cross section itself, q(θm), approaches to zero for angles
greater than π/2, as m approaches µ:
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q(θm) =
π(Z1Z2e

2)2

4E2

cos(θm/2)

sin3(θm/2)
. (1)

The number of particles collected after time t is then given by the product of
the total cross section and the number of particles projected by the beam that
is N0t, where N0 is the number of particles per unit time. The time taken for
detection of particles of mass m less than µ is then inversely proportional to the
difference of masses, i.e.,

t∗ =
16µE2N�

π2N0(Z1Z2e2)2
1

|µ−m| , (2)

where N� is the level of detection in number of particles. Now we can describe the
algorithm in full detail. This algorithm is of a different kind of those considered
in [1, 6, 3].

Let T : N → N be the time given for the experiment to take place as a
function (total map) of the size of the sequence of bits setting the value of the
mass of the bombarding particles. The function T can be seen as a schedule, i.e.,
in each experiment, in order to read the |m|-bit of the mass µ, T (|m|) gives the
amount of time steps that the experimenter accepts to wait until resuming the
experimental conditions. The function T can either be a computable function or
a non-computable function of its argument.

A possible formalisation of Geroch and Hartle’s concepts of measurable num-
ber (mass in the current case) is given in the following definition, adapted from
our work in [6]:

Definition 1. A mass µ is said to be measurable if there exists a computable
schedule 9 T such that the digits of µ can be computed by performing the scat-
tering experiment repeatedly. Otherwise, the mass is said to be non-measurable.

The Turing machine is connected to the scatter machine (STME) in the same
way as it would be connected to an oracle: we replace the query state with a
scattering state (qs), the yes state with a less than state (ql), and the no state
with a more than state (qm). The resulting computational device is called the
analogue-digital scattering machine, and we refer to the unknown mass of the
struck particles of an analogue-digital scattering machine when meant to discuss
the unknown mass of the corresponding STME. After setting the mass m, the
STME will fire particles of mass m, wait T (|m|) time units, and then check
if some particles have been detected in the interval ]π2 ,

3π
2 [, then the Turing

machine computation will be resumed in the state ql. If no particles have been
detected ]π2 ,

3π
2 [, then the Turing machine computation will be resumed in the

state qm. Details on the analogue-digital connection can be found, e.g., in [3].
The folllowing algorithm is parameterised to the time T given to the exper-

imenter to test for the crossing of the threshold of detection of particles in the
angular section ]π2 ,

3π
2 [.

9 Truly speaking, it should be a time constructible function.
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The scattering (Rutherford) algorithm: procedure to read the first n
bits of an unknown mass µ — SCATTERING(T )

Input the required precision n — number of places to the right of the left leading
0;
m,m1 := 0; m2 := 1; w := λ; counter := 0;
µ ∈ (0, 1);
While |m1| ≤ n do begin {loop 1}

Loop {loop 2}
m := (m1 +m2)/2 ;
Fire the beam with particles of mass m ;
If firing particles are detected in the range ]π2 ,

3π
2 [ in time T (|m|), then

Begin

m1 := m;
Exit the loop

End;

Else m2 := m

End Loop; {loop 2}
m2 := 1; counter := counter + 1 ;
If counter > limcounter then return timeout ;

End While; {loop 1}
Output the dyadic rational denoted by m1.

The question is to know if the algorithm (supposedly correct) allows mass
to be measurable according with definition 1. This question is answered in the
paper.

Proposition 1. The AD-Protocol of the analogue-digital scattering machine is
at least exponential in the size of the query, in the size of the mass of the bom-
barding particles.

This proposition, generalised to any physical experiment of measurement,
constitutes what we have called the BCT Conjecture, dicussed in [5, 4, 7, 3] in
another context.

4 Uncertainty

The probability that the next bit of the non-dyadic unknown µ has been mea-
sured after time t is denoted by χµ(t). It turns out that χµ(t)→ 1 when t→∞.
E.g., a function that resembles such a probability is the inverse tangent

2

π
tan−1(t) H(t)
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where H is the Heaviside step function (the one derived from maximum en-
tropy method is analised in the full paper). A probability distribution for such
a function χµ(t) is

qµ(t) =
2

π

1

1 + t2
H(t) .

The conjugate (Fourier transform) of qµ(t) is related to the sensibility to
the frequency/energy (as we will see, in the case of the analogue-digital scatter
machine, is related to the kinetic energy of the proof particle after the collision)
required in the determination of the next bit of µ; it is denoted by pµ(f). The
idea is that, if the ignorance about µ is high, i.e., if the probability χµ(t) gets
close to 1 only for very large value of t, then the energy associated with the
determination of the next bit of µ should be very small.

In our paper we study the common distributions qµ(t) for physical oracle
access. E.g., for a constant distribution qµ within a window of cost of size 2t0,
the normalization gives

pµ(f) =
√

2t0
sin(2πft0)

2πft0
. (3)

This function in the limiting case t0 → ∞ can only be understood in the
context of distributions; the function is 0 everywhere (for every f) except at the
origin (f = 0), where it is undefined (it is infinite).

The functions qµ(t) and pµ(f) constitute a Fourier pair. We prove the Heisen-
berg’s principle for any physical oracle (adapting from the classical theorem
found, e.g., in [14]). For that purpose we assume that the Conjecture BCT holds;
in consequence, the probability qµ(t) can not be proved a priori to be 1 for finite
t.

Proposition 2.

q̂µ p̂µ ≥
1

4π

where q̂µ is the spreads of the probability distribution of time needed to read the
next bit of the unknown value µ — i.e., the uncertainty on the time — and p̂µ
is the spreads of the probability distribution of the frequency/energy needed for
the same task — i.e., the uncertainty on the frequency/energy.

We can then say that our physical oracles are characterized by the following
principle:

q̂µ p̂µ ≥
1

4π
. (4)

For the dyadic rationals, the spreads of time are infinite and, consequently,
the scatter in frequency/energy should be zero: it means that the experimental
apparatus has to distinguish rest from motion with speed arbitrarily close to
zero.

For the well-behaved real numbers, with a high dispersion of bits, the spreads
of time are well delimited as much as the scatter of frequency/energy.
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For the non-measurable real numbers, numbers with either arbitrarily large
gaps of 0s between consecutive 1s or arbitrarily large gaps of 1s between consecu-
tive 0s, the scatter of frequency/energy is small, meaning that the experimenter
has to measure smaller and smaller energy values to differentiate between 0 and
1. However, in this case, the scatter of time as function of the next bit might not
be a computable function. I.e., the value of q̂µ might not be computable, such
as the value of p̂µ that might not be possible to estimate.

We don’t pretend to establish any connection between accessibility to phys-
ical oracles and the Quantum Mechanics. However, let us point out that the
relation between energy and time in the Quantum Mechanics is not that much
Quantum Mechanics as noted by Bunge in [10].
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Edwin Beggs, José Félix Costa and John Tucker would like to thank EPSRC for
their support under grant EP/C525361/1. The research of José Félix Costa is
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Abstract. We propose a formalization of analog algorithms, extending
the framework of abstract state machines to continuous-time models of
computation.

The machine to be described here, like almost every contrivance, apparatus,
or machine in practical use,

is based very largely upon what has been accomplished by others
who previously labored in the same field.

—Description of the U.S. Coast and Geodetic Survey
tide-predicting machine, no. 2 (1915)

1 Introduction

Abstract state machines (ASMs) [12] constitute a most general model of sequen-
tial digital computation, one that can operate on any level of abstraction of
data structures and native operations. By virtue of the Abstract State Machine
Theorem of [13], any algorithm that satisfies three “Sequential Postulates” can
be step-by-step emulated by an ASM. These postulates formalize the following
intuitions: (I) we are talking about deterministic state-transition systems; (II)
the information in states suffices to determine future transitions and may be
captured by logical structures that respect isomorphisms; and (III) transitions
are governed by the values of a finite and input-independent set of (variable-free)
terms.

All notions of algorithms for classical discrete-time models of computation
in computer science, like Turing machines, random-access memory (RAM) ma-
chines, as well as classical extensions of them, including oracle Turing machines,
alternating Turing machines, and the like, [13] fall under the purview of the Se-
quential Postulates. This provides a basis for deriving computability theory, or
even complexity theory, upon these very basic axioms about what an algorithm
really is. In particular, adding a fourth axiom about initial states, yields a way
to derive a proof of the Church-Turing Thesis [4,10,5].

Our goal in the current work is to adapt and extend ideas from work on
ASMs to the analog case, that is to say, from notions of algorithms for digital
models or systems to analog systems.
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We do not want to deal here only with the issue of “continuous space”, that
is, discrete-time models or algorithms with real-valued operations, since these
already fit comfortably within the standard ASM framework. See [1,2]. Indeed,
algorithms for discrete-time analog models, like algorithms for the Blum-Shub-
Smale model of computation [3], can also be covered by the settings of [13].

We want to deal with truly analog systems, that is to say continuous space
and time systems. As surveyed in [7], several approaches have led to continuous-
time models of computations. In particular, one approach inspired by continuous-
time analog machines, has its roots in models of natural or artificial analog
machinery. An alternate approach, one that can be refered to as inspired by
continuous-time system theories, is broader in scope, and derives from research
on continuous-time systems theory from a computational perspective. Hybrid
systems and automata theory, for example, are two such sources.

At its beginning, continuous-time computation theory was mainly concerned
with analog machines. Determining which systems can actually be considered
as computational models is a very intriguing question. This relates to the philo-
sophical discussion about what is a programmable machine. Nonetheless, there
are some early examples of built analog devices that are generally accepted as
programmable machines. They include Pascal’s 1642 Pascaline [9], Hermann’s
1814 Planimeter, Bush’s landmark 1931 Differential Analyzer [6], as well as Bill
Phillips’ 1949 water-run Financephalograph [18]. Continuous-time computational
models also include neural networks and systems that can be built using elec-
tronic analog devices. Such systems begin in some initial state and evolves over
time in response to some input signal. Results are read off from the evolving
state and/or from a terminal state.

Another line of development of continuous-time computation models has been
motivated by hybrid systems, particularly by questions related to the hardness of
their verification and control. Here models are not seen as models of necessarily
analog machines, but as abstraction of systems about which one would like to
establish some properties or derive verification algorithms.

Our aim is here to cover here all these models, with a uniform notion of
computation and of algorithm.

We believe capturing the notion of algorithm or computation for analog
systems is a first step towards a better understanding of computability the-
ory for continuous-time systems. We refer to [7] for a survey and discussion on
continuous-time computability theories.

Even this first step is a non-trivial task. Some work in this direction has
been done for simple signals. See, for example, [8]. Simple (loop-free) examples
are the geometric algorithms in [15]. An interesting approach to specifying some
continuous-time evolutions, based on abstract state machines and using infinites-
imals, is [16]. However, we believe that a general framework capturing general
analog systems is wanting.

The rest of this paper is organized as follows. In the next section, we in-
troduce dynamical transition systems, defining signals and transition systems.
In Section 3, we introduce abstract dynamical systems. Then, in Section 4, we
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define what an algorithmic dynamical system is. Finally, in Section 5, we define
analog programs and provide some examples.

2 Dynamical Transition Systems

Analog systems can be thought of as “states” that evolve over “time”. The sys-
tems we deal with receive inputs, called “signals”, but do not otherwise interact
with their environment.

2.1 Signals

Typically, a signal is a function from an interval of time to a “domain” value, or
to a tuple of atomic domain values. For simplicity, we will presume that signals
are indexed by real-valued time T = R, are defined only for a finite initial (open
or closed) segment of T, and take values in some domain D. Usually, the domain
is more complicated than simple real numbers; it could be something like a tuple
of infinitesimal signals. Every signal u : T ⇀ D has a length, denoted |u|, such
that u(j) is undefined beyond |u|. To be more precise, the length of signals that
are defined on any of the intervals (0, `), [0, `), (0, `], [0, `] is `. In particular, the
length of the (always undefined) empty signal, ε, is 0, as is the length of any
point signal, defined only at moment 0.

The concatenation of signals is denoted by juxtaposition, and is defined as
expected, except that concatenation of a right-closed signal with a left-closed
one is only defined if they agree on the signal value at those closed ends. The
empty signal ε is a neutral element of the concatenation operation.

Let U be the set of signals for some particular domain D. The prefix relation
on signals, u ≤ v, holds if there is a w ∈ U such that v = uw. As usual, we write
u < v for proper prefixes (u ≤ v but u 6= v). It follows that ε ≤ u ≤ uw for all
signals u,w ∈ U . And, u ≤ v implies |u| ≤ |v|, for all u, v.

2.2 Transition Systems

Definition 1 (Transition System). A transition system 〈S,S0,U , T 〉 consists
of the following:

– A nonempty set (or class) S of states with a nonempty subset (or subclass)
S0 ⊆ S of initial states.

– A set U of input signals over some domain D.
– A U-indexed family T = {τu}u∈U of state transformations τu : S → S.

It will be convenient to abbreviate τu(X) as just Xu, the state of the system
after receiving the signal u, having started in state X. We will also use Xũ as
an abbreviation for the trajectory {Xv}v<u, describing the past evolution of the
state.

For simplicity, we are assuming that the system is deterministic. Notice that
the ASM framework, that is to say the classical ASM framework for digital
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algorithms, initialy defined for deterministic systems, has latter been extended
to nondeterministic transitions in [14,11].

Definition 2 (Dynamical System). A dynamical system 〈S,S0,U , T 〉 is a
transition system, where the transformations satisfy

τuv = τv ◦ τu, (1)

for all u, v ∈ U , and where τε is the identity function on states.

This implies that Xuv = (Xu)v.

Remark 1. It follows from this definition that τ(uv)w = τu(vw), since composition
is associative. It also follows that τa◦τa = τa, for point signal a, since then aa = a.

Timed Transitions Timed transition systems are a special case, where signals
are the identity function and D = T.

3 Abstract Dynamical Systems

3.1 Abstract States

A vocabulary V is a finite collection of fixed arity function symbols, some of
which may be marked relational. A term whose outermost function name is
relational is termed Boolean.

Definition 3 (Abstract Transition System). An abstract transition system
is a dynamical transition system whose states S are (first-order) structures over
some finite vocabulary V, such that the following hold:

(a) States are closed under isomorphism, so if X ∈ S is a state of the system,
then any structure Y isomorphic to X is also a state in S, and Y is an
initial state if X is.

(b) Input signals are closed under isomorphism, so if u ∈ U is a signal of the sys-
tem, then any signal v isomorphic to u (that is, maps to isomorphic values)
is also a signal in U .

(c) Transformations preserve the domain (base set); that is, Dom Xu = Dom X
for every state X ∈ S and signal u ∈ U .

(d) Transformations respect isomorphisms, so, if X ∼=ζ Y is an isomorphism
of states X,Y ∈ S, and u ∼=ζ v is the corresponding isomorphism of input
signals u, v ∈ U , then Xu

∼=ζ Yv.

In particular, system evolution is causal (“retrospective”): a state at any
given moment is completely determined by past history and the current input
signal. This is analogous to the Abstract State Postulate for discrete algorithms,
as formulated by Gurevich, except that subsequent states Xu depend on the
whole signal u, not just the prior state X and current input.

To keep matters simple, we are assuming (unrealistically) that all operations
are total. Instead, we simply model partiality by including some undefined ele-
ment ⊥ in domains, as in most of the ASM literature. See however discussions
in [1,2].
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Vocabularies We will assume that the vocabularies of all states include the
Boolean truth constants, the standard Boolean operations, equality, and function
composition, and that these are always given their standard interpretations. We
treat predicates as truth-valued functions, so states may be viewed as algebras.

There are idealized models of computation with reals, such as the BSS model
[3], for which true equality of reals is available in all states. On the other hand,
there are also models of computable reals, for which “numbers” are functions
that approximate the idealized number to any desired degree of accuracy, and in
which only partial equality is available. See [1,2] for how to extend the abstract-
state-machine framework to deal faithfully with such cases.

3.2 Locations in States

Locations Since a state X is a structure, it interprets function symbols in V,
assigning a value b from Dom X to the “location” f(a1, . . . , ak) in X for every
k-ary symbol f ∈ V and values a1, . . . , ak taken from Dom X. In this way, state
X assigns a value JtKX ∈ Dom X to any ground term t over V. Similarly, a state
X assigns the appropriate function value JfKX to each symbol f ∈ V.

States It is convenient to view each state as a collection of the graphs of its
operations, given in the form of a set of location-value pairs, each written con-
ventionally as f(a1, . . . , ak) 7→ b, for a1, . . . , ak, b ∈ Dom X. This allows one to
apply set operations to states.

3.3 Updates of States

We need to capture the changes to a state that are engendered by a system. For
a given abstract transition system, define its update function ∆ as follows:

∆(X) = λu. Xu \X

We write ∆u(X) for ∆(X)(u). The trajectory of a system may be recovered from
its update function, as follows:

Xu = (X \ ∇u(X)) ∪∆u(X) (2)

where
∇u(X) := {` 7→ J`KX : ` 7→ b ∈ ∆u(X) for some b}

are the location-value pairs in X that are updated by ∆u.

4 Algorithmic Dynamic Systems

We say that states X and Y agree, with respect to a set of terms T , if JsKX = JsKY
for all s ∈ T . This will be abbreviated X =T Y . We also say that states X and
Y are similar, with respect to a set of terms T , if or all terms s, t ∈ T , we have
JsKX = JtKX iff JsKY = JtKY . This will be abbreviated X ∼T Y .
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4.1 Algorithmicity

Definition 4 (Algorithmic Transitions). An abstract transition system with
states S over vocabulary V is algorithmic if there is a fixed finite set T of critical
terms over V, such that ∆u(X) = ∆u(Y ) for any two of its states X,Y ∈ S and
signal u ∈ U , whenever X and Y agree on T . In symbols:

X =T Y ⇒ ∆u(X) = ∆u(Y ) (3)

This implies

Xũ =T Yũ ⇒ ∆u(X) = ∆u(Y ) (4)

Furthermore, similarity should be preserved:

Xũ ∼T Yṽ ⇒ Xua ∼T Yva (5)

where a ∈ U is any point signal (|a| = 0).

Following the reasoning in [13, Lemma 6.2], every new value assigned by
∆u(X) to a location in state X is the value of some critical term. That is, if
` 7→ b ∈ ∆u(X), then b = JtKX for some critical t ∈ T .

Agreeability of states is preserved by algorithmic transitions:

Lemma 1. For an algorithmic transition system with critical terms T , it is the
case that

X =T Y ⇒ Xu =T Yu (6)

for any states X,Y ∈ S and input signal u ∈ U .

4.2 Flows and Jumps

A “jump” in a trajectory is a change in the dynamics of the system, in apposition
to “flows”, during which the dynamics is fixed. Formally, a jump corresponds to
a change in the equivalences between critical terms, whereas, when the trajectory
“flows”, equivalences between critical terms is kept invariant. Accordingly, we
will say that a trajectory Xũ flows if all intermediate states Xw and Xv (ε <
w < v < u) are similar. It jumps at its end if there is no prefix w < u such that
all intermediate Xv, w < v < u, are similar to Xu. It jumps at its beginning if
there is no prefix w ≤ u such that all intermediate Xv, ε < v < w, are similar to
X.

4.3 Analgorithms

Definition 5 (Analog Algorithm). An analog algorithm (or “analgorithm”)
is an algorithmic (abstract) transition system, such that no trajectory has more
than a finite number of (prefixes that end in) jumps.

In other words, an analog algorithm is a signal-indexed deterministic state-
transition system (Definitions 1 and 2), whose states are algebras that respect
isomorphisms (Definition 3), whose transitions are governed by the values of a
fixed finite set of terms (Definition 4), and whose trajectories do not change
dynamics infinitely often (Definition 5).
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4.4 Properties

System evolution is causal (“retrospective”): a state at any given moment is
completely determined by past history and the current input signal.

Theorem 1. For any analog algorithm, the trajectory can be recovered from the
immediate past (or updates from the past). That is, Xu, for right-closed signal
u, can be obtained (up to isomorphism) as a function of Xũ (that is, the Xv, for
v < u) plus the final input u∗.

In fact, Xu depends on arbitrarily small segments Xu(t,|u|) (t < |u|) of past
history.

5 Programs

5.1 Definition

Definition 6 (ASM). An ASM program P over a vocabulary V is a finite text,
taking one of the following forms:

– A constraint statement v1, . . . , vn such that C, where C is a Boolean con-
dition over V and the vi are terms over V (usually subterms of C) whose
values may change in connection with execution of this statement.

– A parallel statement [P1 ‖ · · · ‖ Pn] (n ≥ 0), where each of the Pi is an
ASM program over V. (If n = 0, this is “do nothing” or “skip”.)

– A conditional statement if C then P , where C is a Boolean condition over
V, and P is an ASM program over V.

We can use an assignment statement f(s1, . . . , sn) := t as an abbreviation
for f(s1, . . . , sn) such that f(s1, . . . , sn) = t. But bear in mind that the result
is instantaneous, so that x := 2x is tantamount to x := 0, regardless of the
prior value of x. Similarly, x := x+ 1 is only possible if the domain includes an
“infinite” value ∞ for which ∞ =∞+ 1.

5.2 Examples

We restrict in a first step to analog algorithms that purely flow, that is to say
with no jump.

In simple continuous-time systems, the state evolves continually, governed
by ordinary differential equations, say. Flow programs invoke a time parameter,
which we assume is supplied by the input signal.

Example 1 (Pendulum). The motion of an idealized simple pendulum is governed
by the second-order differential equation

θ′′ +
g

L
θ = 0
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where θ is angular displacement, g is gravitational acceleration, and L is the
length of the pendulum rod. Let the signal u ∈ U be just real time. States report
the current angle θ ∈ V. All states are endowed with the same (or isomorphic)
operations for real arithmetic, including sine and square root, interpreting stan-
dard symbols. Initial states contain values for g, L, and the initial angle θ0 when
the pendulum is released.

For small θ0, the flow trajectory τt(X) can be specified simply by

θ = θ0 · sin
(√

g

L
· ı
)

where ı is the input port and nothing but θ changes from state to state. The
update function is, accordingly,

∆t(X) =

{
θ 7→ θ0 · sin

(√
g

L
· ı
)}

Hence, the critical term is θ0 · sin(
√
g/L · ı).

It can be described by program

[θ such that θ = θ0 · sin
(√

g

L
· ı
)

]

Example 2 (GPAC). One of the most famous models of analog computations is
the General Purpose Analog Computer (GPAC) of Claude Shannon [17]. Here
is a (non-mimimal) GPAC that generates sine and cosine: in this picture, the

∫

signs denote some integrator, and the −1 denote some constant block.

∫ ∫ ∫
-1

q q
t

z
y

x

If initial conditions are set up correctly, such a system will evolve according to
the following initial value problem




x′ = z x(0) = 1
y′ = x y(0) = 0
z′ = −y z(0) = 0 ,

It follows that x(t) = cos(t), y(t) = sin(t), z = − sin(t).
In other words, this simple GPAC that generates sine and cosine can be

modeled implicitly as a system with initial state having x = 1; y = 0; z = 0 and
by a program

[x, y, z such that x′ = z ∧ y′ = x ∧ z′ = x]

where we presume that x′, y′, z′ denote derivatives of corresponding functions.
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The proposed model can also adequately describe systems (like a bouncing
ball) in which the dynamics change periodically:

Example 3. The physics of a bouncing ball are given by the explicit flow equa-
tions

v = v0 − g · t
x = v · t

where g is the gravitational constant, v0 is the velocity when last hitting the
table, and t is the time signal—except that upon impact, each time x = 0, the
velocity changes according to

v0 = −k · v

where k is the coefficient of impact. The critical Boolean term is x = 0. In any
finite time interval, this condition changes value only finitely many times. ut

It can be described by a program like

[if x 6= 0 then x, v such that v = v0−g ·t, x = v ·t ‖ if x = 0 then v0 := −k ·v],

where x stands for its height, v its speeed. Every time the ball bounces, its speed
is reduced by a factor k.

References

1. Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. Exact exploration. Tech-
nical Report MSR-TR-2009-99, Microsoft Research, Redmond, WA. July 2009.
Submitted.

2. Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. Exact Exploration and
Hanging Algorithms. Computer Science Logic 2010, Brno, Czech Republic. Lecture
Notes in Computer Science, Springer-Verlag, 2010.

3. Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and com-
plexity over the real numbers: NP completeness, recursive functions and universal
machines. Bull. Amer. Math. Soc. (NS), 21:1–46, 1989.

4. Udi Boker and Nachum Dershowitz. The Church-Turing Thesis over Arbitrary Do-
mains. Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhten-
brot on the Occasion of His 85th Birthday, Arnon Avron, Nachum Dershowitz,
and Alexander Rabinovich, eds., Lecture Notes in Computer Science, vol. 4800,
Springer-Verlag, Berlin, pp. 199–229, 2008.

5. Udi Boker and Nachum Dershowitz. Three Paths to Effectiveness. Fields of Logic
and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70th
Birthday, Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig, eds., Lecture
Notes in Computer Science, vol. 6300, Springer-Verlag, Berlin, 2010.

6. V. Bush. The differential analyser. Journal of the Franklin Institute, 212(4):447–488,
1931.

93



7. Olivier Bournez and Manuel L. Campagnolo. A survey on continuous time com-
putations. In New Computational Paradigms. Changing Conceptions of What is
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Abstract. Recursive analysis is the most classical approach to model
and discuss computations over the real numbers.Recently, it has been
shown that computability classes of functions in the sense of recursive
analysis can be defined (or characterized) in an algebraic machine inde-
pendent way, without resorting to Turing machines. In particular nice
connections between the class of computable functions (and some of its
sub- and sup-classes) over the reals and algebraically defined (sub- and
sup-) classes of R-recursive functions à la Moore 96 have been obtained.
However, until now, this has been done only at the computability level,
and not at the complexity level. In this paper we provide a framework
that allows us to dive into the complexity level of real functions. In par-
ticular we provide the first algebraic characterization of polynomial-time
computable functions over the reals. This framework opens the field of
implicit complexity of analog functions, and also provides a new reading
of some of the existing characterizations at the computability level.

Keywords: Recursive Analysis, Polynomial Time, Algebraic Charac-
terization, Real Computation, Oracle Turing Machines

1 Introduction

Building a well founded theory of computation over the reals is a crucial task.
However, computability over the reals is not as well understood as the corre-
sponding notion over discrete objects where the Church-Turing thesis yields a
clear equivalence between different computational models. When talking about
continuous computation several approaches have been developed with various
motivations but without so-clear relationships. Such approaches include the
Blum-Shub-Smale (BSS) model [1, 2], Shannon’s General Purpose Analog Com-
puter (GPAC) [3], algebraically defined classes of functions over the reals à la
Moore 96 (R-recursive functions) [4], as well as the recursive analysis approach.

Recursive analysis was introduced by Turing [5], Grzegorczyk [6], and La-
combe [7]. It can be considered as the most classical approach to talk about
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computability and complexity of functions over the real numbers, as its foun-
dations are already present in Alan Turing’s 1936 seminal paper. In recursive
analysis, a function f : R → R is computable if there exists some computable
functional, or Type 2 machine, that maps any sequence of rational numbers
quickly converging to x to another sequence quickly converging to f(x).

There is no hope to unify all approaches of continuous computations: for
example the BSS models can not be conciliated with the recursive analysis
viewpoint, as a non-continuous function can be computed in the BSS frame-
work. However, if we put aside this latter model, which is more motivated by
the algebraic complexity of problems rather than being a universal model, some
recent works have shown strong connections between recursive analysis, Shan-
non’s GPAC, and R-recursive functions. These results basically state that all
these paradigms are more or less equivalent: see [8, 9] or survey [10]. This can be
considered somehow as yielding a kind of phenomenon for analog computations
like the Church’s thesis for discrete computations.

However, up till now discussions have mainly been restricted to the com-
putability level, and not to the complexity level.

Connecting models, known to be related at the computability level, at the
complexity level is an even more ambitious goal. An immediate deep problem is
that of defining the traditional complexity notions for some of the models such
as the GPAC. One reason is that there is no robust and well defined notion of
time and space for these models, as shown by several attempts [4, 11, 12, 10].

We show in this paper that it is indeed possible to relate models at the com-
plexity level when restricting to the recursive analysis and R-recursive functions
approaches. There is indeed an unambiguous, well developed, and rather well
understood theory of complexity in recursive analysis [13]. We relate it to a sub-
class of R-recursive functions, that is, to a machine-independent algebraically
defined class of functions over the reals à la Moore 96 [4].

In particular this paper presents the first algebraic machine-independent
characterization of polynomial-time computable functions in the sense of re-
cursive analysis.

We provide as a side effect a whole framework for implicit complexity in re-
cursive analysis that gives a way to relate computability and complexity over the
reals to computability and complexity over the integers. We also extend [14], and
prove that computable functions over the reals correspond to functions generable
by Shannon’s GPAC; we extend [9, 15, 8] and prove that computable functions
and elementary-time computable functions correspond to natural subclasses of
R-recursive functions. In particular, unlike [14, 9, 15, 8], we provide characteri-
zations that work even for non-Lipschitz functions (and that differ slightly for
Lipschitz functions). This well founded framework may be a significant step
towards a sane computability and complexity theory of functions over the reals.

Potential applications of polynomial-time characterizations include the pos-
sibility of proving whether a given function can be computed in polynomial time
without resorting to efficiently program it, as well as the possibility of building
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methods to automatically derive computational properties of programs/systems,
in the lines of [16–18] for discrete programs.

We also believe in the pedagogical value of our characterizations. They yield
ways to define computability and complexity over the reals without resorting to
any kind of machinery in the spirit of (Type 1 or Type 2) Turing machines. This
is a very natural and intuitive paradigm that avoids discrete machinery when
talking about continuous computation.

2 Related Work

We prove our results by relating the notion of (polynomial-time) computable
functions over the reals to the corresponding notion over the integers. Our setting
is actually proved to be robust to approximations: one does not need to be able
to compute exactly the corresponding class over the integers, but only some
defined approximation of it in order to be able to compute the corresponding
class over the reals.

Hence, our framework gives a way to rely on algebraic machine-independent
characterizations of computable functions over the integers. Several such char-
acterizations are known [19]: in particular, Kleene’s functions are well known
to capture exactly the discrete functions computable by Turing machines. Cob-
ham [20], and later Bellantoni and Cook [21], were among the first to propose
algebraically defined characterizations of polynomial-time computable discrete
functions. Our main theorem relies on Bellantoni and Cook’s ideas in [21]. Other
machine independent characterizations of classical computability and complexity
classes (see survey [19]) over the integers could also be considered.

Notice that our framework is different from the one proposed by Campagnolo
and Ojakian in [22]: in particular, it has the main advantage of allowing to talk
not only about the computability level but also about the complexity level. It
should also be noticed that our characterization relies exclusively on functions
over the reals, hence it can not be compared with approaches such as [23] or
[24] which explore complexity of type 2 functionals. Algebraic characterizations
of functions over more general domains, including the reals, have been obtained
in [25]. However, the obtained characterization in this latter paper is rather
different to the ones discussed here: on one hand, a more abstract setting that
is not restricted to real functions is considered there, but on the other hand the
discussion is only restricted to the computability level, and less in the spirit of
the above mentioned models of continuous computation.

In this paper, for ease of presentation, we only consider functions defined over
compact domains. The constructions described here can indeed be extended to
functions over arbitrary domains.
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3 Essentials of Recursive Analysis

In this section, we recall some basic definitions from recursive analysis: see [26, 13]
for a full detailed presentation. Let D = { a

2b
: for integers a, b and b ≥ 0} be the

set of dyadic rationals. These are the rationals with finite binary representation.

Definition 1. Assume x ∈ R. A Cauchy sequence representing x is a function
ϕx : N → D that converges at a binary rate: ∀n ∈ N : |x − ϕx(n)| ≤ 2−n. Given
x ∈ R, let CFx denote the class of Cauchy functions that represent x.

Definition 2 (Computability of real functions). Let f be a function f : D ⊆
R→ R, where D has only one connected component (in the following discussion
we deal almost exclusively with either D = [0, 1] or D = R). We say that f is

computable if there exists a function-oracle Turing machine M
()

such that for
every x ∈ D, for every ϕx ∈ CFx, and for every n ∈ N the following holds:
|Mϕx

(n)− f(x)| ≤ 2−n.

If D = [0, 1], then we say f is polytime computable if the computation time
of M

ϕx
(n) is bounded by p(n) for some polynomial p. In case D = R, we say f

is polytime computable if the computation time of M
ϕx

(n) is bounded by p(k, n)
for some polynomial p where k = min{j : x ∈ [−2j , 2j ]}.

It is well known that continuity is a necessary condition for real computa-
tion, though it is not sufficient. The following definition introduces the notion of
‘modulus of continuity’ which in some sense quantifies the concept of continuity
and provides a useful tool in the investigation of real computation [27].

Definition 3 (Modulus of continuity). Consider a function f : R→ R. Then
f has a modulus of continuity if there exists a function m : N2 → N such that for
all k, n ∈ N and for all x, y ∈ [−2k, 2k] the following holds: if |x− y| ≤ 2−m(k,n),
then |f(x) − f(y)| ≤ 2−n. If f is defined over [0, 1] the same definition holds
except that the parameter k is not necessary anymore, that is m : N→ N.

Notice that the existence of a modulus of continuity for a function f implies
that this function is continuous. In analogy with [13, corollary 2.14], computabil-
ity over unbounded domains can be characterized as follows [27].

Proposition 1. Let a function f : R→ R. Then f is computable iff there exist
two computable functions m : N2 → N and ψ : D× N→ D such that

1. m is a modulus of continuity for f ,
2. ψ is an approximation function for f , that is, for every d ∈ D and every

n ∈ N the following holds: |ψ(d, n)− f(d)| ≤ 2−n.

When restricting attention to polytime computability two additional require-
ments need to be added to the previous proposition: (1) the modulus m is a
polynomial function, that is m(k, n) = (k + n)b for some b ∈ N and (2) ψ(d, n)
is computable in time p(length(d) + n) for some polynomial p.
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4 Characterizing Polytime Real Complexity over
Compact Domains

In this section, we prove that it is possible to relate computability over the reals
to computability over the integers. We do it in two steps. In the first step, we
consider the special case of Lipschitz functions. In the second step, we discuss
how to avoid the Lipschitz hypothesis, and consider general functions.

Without loss of generality we assume that the compact domain is always the
unit interval [0, 1]. Let’s first provide a preliminary first result to help explaining
what we would like to get.

4.1 A preliminary first result

A real function over a compact interval can be characterized by the discrete
projection of a function with domain [0, 1] × R. The extra dimension can be
viewed as representing the precision of the computed approximation.

Proposition 2 (Complexity over [0, 1] vs Complexity over [0, 1]×R). The
following are equivalent:

1. a function f : [0, 1]→ R is polytime computable,
2. there exists a polytime computable function g : [0, 1]× R→ R such that:

∀x ∈ [0, 1],∀y ∈ N : |g(x, y)− yf(x)| ≤ 1. (1)

We would like to talk about functions g with assertions like above but quan-
tification is only done over the integers, that is to say about assertions like (1)
but with something like ∀x ∈ N instead of ∀x ∈ [0, 1].

Moving to such a full integer characterization we are faced with the problem
of how the notion of continuity, which is exclusive to real computable functions,
can be transferred to the integer domain.

4.2 Lipschitz functions

For Lipschitz functions this is facilitated by the fact that such functions pro-
vide us with free information about their continuity properties. A real function
f : [0, 1] → R is Lipschitz if there exists a constant K ≥ 0 such that for all
x1, x2 ∈ [0, 1] the following holds: |f(x1)− f(x2)| ≤ K|x1 − x2|.

Proposition 3 (Complexity over [0, 1] vs Complexity over R × R). Fix
an arbitrary constant ε ≥ 0. Let f be a Lipschitz function on [0, 1]. Then the
following are equivalent:

1. f is polytime computable,
2. there exists a polytime computable function g : R× R→ R such that:

∀x ∈ N,∀y ∈ N≥1, x ≤ y : |g(x, y)− yf(
x

y
)| ≤ ε (2)
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In order to interrelate with discrete complexity classes we suggest to employ
the following notion of approximation.5

Definition 4 (Approximation). Let C be a class of functions from R2 to R.
Let D be a class of functions from N2 to N. Let f be a function defined on [0, 1].

1. We say that C approximates D if for any function g ∈ D, there exists some
function g̃ ∈ C such that for all x, y ∈ N we have

|g̃(x, y)− g(x, y)| ≤ 1/4 (3)

2. We say that f is C-definable if there exists a function g̃ ∈ C such that the
following holds

∀x ∈ N,∀y ∈ N≥1, x ≤ y : |g̃(x, y)− yf(
x

y
)| ≤ 3 (4)

We then have the following result:6

Theorem 1 (Complexity over [0, 1] vs approximate complexity over
N2). Consider a class C of polytime computable real functions that approximates
the class of polytime computable discrete functions. Assume that f : [0, 1] → R
is Lipschitz. Then f is polytime computable iff f is C-definable.

In the right-to-left direction of the previous, Eq. (4) implicitly provides a
way to efficiently approximate f from g̃ � N2. Computability of f is possible,
in particular at the limit points, from the fact that it is Lipschitz (hence con-
tinuous), and efficiency is possible by the fact that g̃ is polytime computable.
The left-to-right direction relates polytime computability of real functions to the
corresponding discrete notion.

4.3 Avoiding the Lipschitz hypothesis

The major obstacle to avoid the Lipschitz hypothesis is how to implicitly encode
the continuity of f in discrete computations. This is done in two steps: (1) en-
coding the modulus of continuity which provides information at arbitrarily small
rational intervals (however, it does not tell anything about the limit irrational
points) and (2) bounding the behavior of the characterizing function g both at
unit intervals and at its integer projection.

We need another notion of ‘approximation’ that is a kind of converse to that
given in Definition 4.

Definition 5 (Polytime computable integer approximation). A function
g : Rd → R is said to have a polytime computable integer approximation if there
exists some polytime computable function h : Nd → N with |h(x̄)− g(x̄)| ≤ 1 for
all x̄ ∈ Nd.

5 Notice that the choice of the constants 1
4

and 3 in Definition 4 is arbitrary.
6 Note that all these results still hold if we replace ‘polytime computable’ by just

‘computable’.
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A sufficient condition is that the restriction of function g to integers is poly-
time computable. The choice of the constant 1 is then due to the fact that this
is the best estimated error when trying to compute the floor of a real function.
Now we define a special class of functions that will be used to implicitly describe
information about the smoothness of real functions; its role can be compared to
that of the moduli of continuity.

Definition 6. Consider a function T : N → N and define #T : R≥1 → R by
#T [x] = 2T (blog2 xc). When T is a polynomial function with T (x) = Θ(xk) we
write #k to simplify the notation.

The following proposition is then the non-Lipschitz version of Proposition 3.

Proposition 4 (Complexity over [0, 1] vs complexity over R×R). Fix an
arbitrary constant ε ≥ 0. The following are equivalent:

1. a function f : [0, 1]→ R is polytime computable,
2. there exists some function g : R× R→ R such that

(a) g has a polytime computable integer approximation,
(b) for some integer k,

∀x ∈ [0, 1],∀y ∈ R≥1 : |g(x ·#k[y], y)− yf(x)| ≤ ε, (5)

(c) for some integer M ,

∀x1, x2 ∈ R≥0, y ∈ R≥1 : |x1 − x2| ≤ 1⇒ |g(x1, y)− g(x2, y)| ≤M (6)

We need to consider real functions that are well behaved relative to their
restriction to N2. For ease of notation, we will use [a, b] to denote [a, b] or [b, a],
according to whether a < b or the contrary.

Definition 7 (Peaceful functions). A function g : R2 → R is said to be
peaceful if ∀x ∈ R≥0,∀y ∈ N : g(x, y) ∈ [g(bxc, y), g(dxe, y)]. We say that a class
C of real functions peacefully approximates some class D of integer functions,
if the subclass of peaceful functions of C approximates D.

Definition 8. Let C be a class of functions from R2 to R. Let us consider a
function f : [0, 1]→ R and a function T : N→ N.

1. We say that f is T -C-definable if there exists some peaceful function g ∈ C
such that

∀x ∈ N,∀y ∈ N≥1, x ≤ #T [y] : |g(x, y)− yf(
x

#T [y]
)| ≤ 2, (7)

2. We say that f is T -smooth if there exists some integer M such that

∀x, x′ ∈ R≥0,∀y ∈ R≥1, x, x′ ≤ #T [y] :

|x− x′| ≤ 1⇒ y|f(
x

#T [y]
)− f(

x′

#T [y]
)| ≤M (8)
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Notice the similarity in the role that #T [y] plays in the previous definition
and as a modulus of continuity for f . Now we can have the non-Lipschitz version
of Theorem 1.

Theorem 2. (Complexity over [0, 1] vs approximate complexity over N2) Con-
sider a class C of real functions that peacefully approximates polytime computable
discrete functions, and whose functions have polytime computable integer approx-
imations.7 Then the following are equivalent:

1. a function f : [0, 1]→ R is polytime computable,
2. there exists some integer k such that

(a) f is nk-C-definable,
(b) f is nk-smooth.

Proof. (1) ⇒ (2) : Let f : [0, 1] → R be a polytime computable function. By
Proposition 4 for ε = 3/4, there exists some function g with a polytime com-
putable integer approximation h such that (5) holds. Now, by the hypothe-
sis of this theorem, there exists some peaceful h̃ ∈ C such that ∀x, y ∈ N :
|h̃(x, y)− h(x, y)| ≤ 1/4. Hence ∀x, y ∈ N : |h̃(x, y)− g(x, y)| ≤ 1 + 1

4 = 5
4 .

Finally, we have8 (through change of variables in Eq. (5) and restricting the
domains of the variables to N)

∀x ∈ N,∀y ∈ N≥1, x ≤ #k[y] : |h̃(x, y)− yf(
x

#k[y]
)| ≤ 5

4
+

3

4
= 2 (9)

Hence, condition 2a holds. Now, by (2c) of Proposition 4, we know that for
all x ∈ R≥0, y ∈ R≥1, and δ ∈ [0, 1]: |g(x+ δ, y)− g(x, y)| ≤M for some integer
M . Then by using Eq. (5) (after variable change and renaming), condition (2b)
is satisfied.

(2) ⇒ (1) : Let g ∈ C be a peaceful function that nk-C-defines f . Proof is by
applying Proposition 4 as follows. From the hypothesis of this theorem g has a
polytime computable integer approximation, hence condition 2a of Proposition
4 is satisfied. Condition 2a of the current theorem is equivalent to condition 2b
of Proposition 4 by: (1) letting ε = 2, (2) renaming of the variables, and (3)
observing that the proof of Proposition 4 can be easily adapted to a new version
of condition 2b for which x and y take only integer values. Using the fact that g
is peaceful (controlling the behavior of g between integer points) condition (2c)
of Proposition 4 can be easily verified.

The previous theorem can be generalized to any complexity class as indicated
by the following corollary.

7 A sufficient condition for that is that restrictions to integers of functions from C are
polytime computable.

8 Note that all these results still hold if we replace ‘polytime computable’ by just
‘computable’.
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Corollary 1. Let D be a class of time-constructive functions from N to N that
includes polynomial functions and closed under composition. Consider a class
C of functions that peacefully approximate the class of discrete functions com-
putable in time D; and whose functions have integer approximations computable
in time D. 9 Then the following are equivalent:

1. a function f : [0, 1]→ R is computable in time D,
2. there exists some T ∈ D such that

(a) f is T -C-definable,
(b) f is T -smooth.

Proof. The proof is similar to that of the previous theorem. It should be noted
that if f is computable in time bounded by D then it has a modulus in D. This
is a direct consequence of [13, Theorem 2.19].

5 Applications

In this section we apply the above results to algebraically characterize some
computability and complexity classes of real functions. We first obtain some
restatements and extensions of already known results, using our framework. We
then provide new results, in particular, the main result given by theorems 3 and
4 and corollary 2 which provide algebraic machine independent characterizations
of polynomial time computable functions.

5.1 GPAC-generable functions

The General Purpose Analog Computer, introduced by Claude Shannon in [3]
to model a mechanical device, can be seen in a modern perspective as what
can be computed using analog electronics. It consists of circuits interconnecting
basic blocks that can be constants, adders, multipliers, and integrators. GPAC-
computable functions have been characterized in different ways since the intro-
duction of the model. In the following we will use Graça and Costa’s charac-
terization by PIVP (Polynomial Initial Value Problems) [28]. A function is said
to be PIVP if it is a component of the solution of a differential equation of the
following form:

{
y(t0) = y0
y′(t) = p(t, y)

with y : Rn → R and p is a vector of polynomial functions. The next lemma
follows from the constructions in [14]:

Lemma 1. PIVP functions is a class of computable functions that peacefully
approximate total (discrete) recursive functions.

9 A sufficient condition for that is restrictions to integers of functions from C are
computable in time D.
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Then the following result follows directly from Theorem 1 (and Footnote 6),
and from Corollary 1 (and Footnote 8).

Proposition 5 (Variation of [8]). A Lipschitz function f : [0, 1] → R is
computable iff it is PIVP-definable.

Proposition 6 (Extension of [8]). Let f : [0, 1] → R be some T -smooth
function, for some total recursive function T : N→ N. Then f is computable iff
it is T -PIVP-definable.

5.2 Particular classes of R-recursive functions

A function algebra F = [B;O] is the smallest class of functions containing a set
of basic functions B and their closure under a set of operations O.

Elementarily computable functions: class L Let us now consider the class
L defined in [15]: L = [0, 1,−1, π, U, θ3;COMP,LI], where π is the mathematical
constant π = 3.14.., U is the set of projection functions, θ3(x) = max{0, x3},
COMP is the classical composition operation, LI is Linear Integration. From
the constructions of [15], we know that this class captures the discrete elementary
functions. In addition the following lemma follows from the constructions in [9].

Lemma 2. L is a class of real functions computable in elementary time that
peacefully approximates total discrete elementarily computable functions.

Again using the above results we can obtain characterizations of the class of
elementarily computable analysis functions:

Proposition 7 (Variation of [15]). A Lipschitz function f : [0, 1] → R is
computable in elementary time iff it is L-definable.

Proposition 8 (Extension of [15]). Let f : [0, 1] → R be some T -smooth
function, for some elementary function T : N → N. Then f is computable in
elementary time iff it is T -L-definable.

As in [15, 9], we can also characterize in a similar way the functions com-
putable in time En for n ≥ 3, where En represents the n-th level of the Grzegor-
czyk hierarchy.

Recursive functions: class Lµ Let us now consider the class Lµ defined
in [9]: Lµ = [0, 1, U, θ3;COMP,LI, UMU ], where a zero-finding operator UMU
has been added. This class is known (see [9]) to extend the class of total (discrete)
recursive functions; from the constructions in this latter paper one can show:

Lemma 3. Lµ is a class of computable functions that peacefully approximate
the class of total discrete recursive functions.
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And hence, as a consequence of Theorem 1 and Corollary 1, we obtain:

Proposition 9 (Variation of [9]). A Lipschitz function f : [0, 1] → R is
computable iff it is Lµ-definable.

Proposition 10 (Extension of [9]). Let f : [0, 1] → R be some T -smooth
function, for some total recursive function T : N→ N. Then f is computable iff
it is T -Lµ-definable.

5.3 Main result: polytime computable functions

We are now ready to provide our main result: an algebraic characterization of
polytime computable functions over the reals.

To do so, we define a class of real functions which are essentially extensions
to R of the Bellantoni-Cook class [21]. This latter class was developed to exactly
capture discrete polytime computability in an algebraic machine-independent
way. In the next definition any function f(x1, . . . , xm; y1, . . . , yn) has two types
of arguments (see [21]): normal arguments which come first followed by safe
arguments using ‘;’ for separation. For any n ∈ Z we call [2n, 2n + 1] an even
interval and [2n+ 1, 2n+ 2] an odd interval.

Definition 9. Define the function algebra

W = [0, 1,+,−, U, p, c, parity;SComp, SI]

1. zero-ary functions for the constants 0 and 1,
2. a binary addition function: +(;x, y) = x+ y,
3. a binary subtraction function: −(;x, y) = x− y,
4. a set of projection functions U = {U ji : i, j ∈ N, i ≤ j} where:

Um+n
i (x1, . . . , xm;xm+1, . . . , xm+n) = xi,

5. a polynomial conditional10 function c defined by: c(;x, y, z) = xy+ (1− x)z.
6. a continuous parity function: parity(;x) = max(0, 2/πsin(πx)).

Hence, parity(;x) is non-zero if and only if x lies inside an even interval.

Furthermore, for any n ∈ Z the following holds:
∫ 2n+1

2n
parity(;x)dx = 1.

7. a continuous predecessor function p defined by: p(;x) =
∫ x−1
0

parity(; t)dt.
Note that when x belongs to an even interval p(;x) acts exactly like bx2 c. On
an odd interval [2n+ 1, 2n+ 2], it grows continuously from n to n+ 1.

8. a safe composition operator SComp: given a vector of functions ḡ1(x̄; ) ∈
W, a vector of functions ḡ2(x̄; ȳ) ∈ W, and a function h ∈ W of arity
len(ḡ1) + len(ḡ2) (where len denotes the vector length). Define new function

f(x̄; ȳ) = h(ḡ1(x̄; ); ḡ2(x̄; ȳ)) (10)

It is clear from the asymmetry in this definition that normal arguments can
be repositioned in safe places whereas the opposite can not happen.

10 If x = 1, the conditional is equal to y; if x = 0, it is equal to z. Between 0 and 1, it
stays between y and z.
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9. safe integration operator11 SI: given functions g, h0, h1 ∈ W. Let p′(;x) =
p(;x− 1) + 1. Define a new function solution of the ODE:

f(0, ȳ; z̄) =g(ȳ; z̄)

∂xf(x, ȳ; z̄) = parity(x; )[h1(p(x; ), ȳ; z̄, f(p(x; ), ȳ; z̄))

− f(2p(x; ), ȳ; z̄)]

+ parity(x− 1; )[h0(p′(x; ), ȳ; z̄, f(p′(x; ), ȳ; z̄))

− f(2p′(x; )− 1, ȳ; z̄)]

(11)

This operator closely matches Bellantoni and Cook’s predicative recursion
on notations: if x belongs to an even interval, we apply h0 to its predecessor
p(x; ); if x belongs to an odd interval, we apply h1 to p′(x; ) = bx/2c.

This classW is based on the Bellantoni-Cook’s constructions and normal/safe
arguments ideas in order to have the following properties, proved by induction.

Proposition 11. 1. Class W preserves the integers, that is for every f ∈ W,
f � Z : Z→ Z.

2. Every polytime computable discrete function has a peaceful extension in W.
3. Every function in W is polytime computable.

The proposition indicates thatW is a class of polytime computable real func-
tions that approximates polytime computable discrete functions. Hence, using
Theorem 1 the following result is obtained.

Theorem 3. A Lipschitz function f : [0, 1]→ R is polytime computable iff it is
W-definable.

Additionally, the previous proposition implies that any function in W has
polytime computable integer approximation, hence using Corollary 1, we can
get the following result.

Theorem 4. Let f : [0, 1] → R be some nk-smooth function for some k. Then
f is polytime computable iff it is nk-W-definable.

Notice that C-definability of a function can be seen as a schema that builds
a function f from a function g̃ ∈ C (see definition of C-definability). Hence, the
class of polytime computable functions can be algebraically characterized in a
machine-independent way as follows.

Corollary 2. Let Def [C] stand for C-definability. Then a function f : [0, 1]→ R
is polytime computable iff either (1) f is Lipschitz and belongs to Def [0, 1,+,−, U
, p, c, parity;SComp, SI] or (2) f is nk-smooth and belongs to nk-Def[0, 1,+,−, U
, p, c, parity;SComp, SI].

11 Notice also that for simplicity we misuse the basic functions (and p′) so that their
arguments are now in normal positions (the alternative is to redefine a new set of
basic functions with arguments in normal positions).
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Remark 1. It follows from our constructions that one could have put ∗(;x, y) =
xy as a basic function, from which c(;x, y, z) = +(; ∗(;x, y), ∗(;−(; 1, x), z))
would be definable. In the same spirit adding π, 1/π, sin(;x) = sin(x), and
max(;x, y) = max(x, y) would yield parity(;x).

Remark 2. parity(;x) can be replaced by any function with above mentioned
properties.
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Abstract. We show that some classes of multi-modal paraconsistent
logics endowed with some weak forms of negation are incompletable with
respect to Kripke semantics. We argue that this shortcoming, more than
just a logical predicament, may be relevant for the attempts to model
quantum information in (multi)modal logical terms. However, such in-
completeness in principle does not affect the modal possible-translations
semantics, which may be a way out of the incompleteness jungle.

1 Quantic Phenomena, Negation and Modality

Three-quarters of a century after Birkhof and von Neumann’s proposal (cf. [1])
of a logical system able to make comprehensible (from the classical viewpoint)
some ‘paradoxes’ of quantum mechanics, logicians, philosophers and computer
scientists are still dealing with the question. In the meantime, paraconsistent
logic has emerged, and it is considered by many that regarding the roots of a
quantum deductive system from a paraconsistent perspective represents a clear
mathematical and philosophical advantage from several viewpoints.

The well-known proof-theorist G. Takeuti in [2] had already adverted that
‘quantum logic is drastically different from the classical logic or the intuitionistic
logic.” Thirty years later we do not know how drastic the difference is, but
many evidences point to the kinship between quantum reasoning (the logic of
orthomodular lattices) and paraconsistent deduction.

H. Aoyama has shown in [3] that such a kinship can be rigorously supplied:
he proved, by syntactical means, that quantum logic is related to a paraconsis-
tent logic (in the form of a dual intuitionistic logic which he calls DI; see also
[4]). The question of the duality between the intuitionistic and the paraconsis-
tent paradigms of thought has been object of concern since years; in [5] several
classes of anti-intuitionistic logics are defined and compared with familiar para-
consistent calculi. It is proven that, although a duality between intuitionistic
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and paraconsistent reasoning archetypes subsist, this duality can be carried out
up to a certain limit only.

The connection between the quantum and the paraconsistent paradigms is
not accidental. The paraconsistent Turing machines, studied in [6], allow for
a partial simulation of superposed states of quantum computing, and in some
cases entangled states and relative phase. Such machines permit to define para-
consistent algorithms which solve (under certain restrictions) the well-known
Deutsch’s and Deutsch-Jozsa problems.

On the other hand, it is well accepted that traditional quantum logic has
connections to classical modal logic as the system the so-called Brouwerian sys-
tem B and its extensions. As argued in [7], by considering not only propositions
in quantum logic as expressing results of quantum experiments, but including
propositions about the possibility of results of experiments, there is a quite inter-
esting translation between the quantum propositional logic QP and an extension
of B.

In a more usual notation (cf. e.g. [8]) the system B is axiomatized by the
following modal schemas:

PC All the theorems of the Propositional Calculus PC
(K) �(p ⊃ q) ⊃ (�p ⊃ �q)
(T) �p ⊃ p
(B) p ⊃ �♦p

closed under the following derivation rules:

(US) Uniform Substitution: for each variable p and sentense β, if ` α then
` α[p/β]

(MP) Modus Ponens: q is deducible from p and p ⊃ q;
(Nec) Necessitation: if ` p, then ` �p.

To this system a new rule is added, defining the system B+ :

�p ⊃ �q,�q ⊃ ♦�p ` �q ⊃ �p

.
Now, the quantum propositional logic QP is the logic of the propositions

built from connectives ∧ (conjunction) and v (orthomodular negation) valid in
all orthomodular lattices L. A translation + is defined in [7] between the quantum
propositional logic QP and B+ as follows:

α+ = �α
(α ∧ β)+ = α+ ∧ β+

(v α)+ = �¬α+

where ¬ is the usual Boolean negation of normal modal logics.
It can be shown (theorems 1 and 2 in [7] that the mapping + acts as a strong

translation between QP and B+, in the sense that (for Γ ∪ {α} in the language of
QP) it holds:

Γ `QP α iff Γ+ `BR+ α
+
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This translation permits the propositions of the modal system B+ which are
images of sentences of QP by the translation + to be interpreted as records of
results of experiments with atomic objects. The mapping +, however, is not a
bijective, and the interpretation of other propositions of B+ (not images of QP)
remain vague or uninterpreted.

There is an intuitive reason why this translation from the quantum proposi-
tional logic QP (regarded as a logic of orthomodular lattices) to the modal logic
B+ should work: the orthomodular negation v, weaker than classical negation,
can be understood as “it is not possible that” or “necessarily not that”, and in
this sense is loosely connected to intuitionistic logic, which has, on its turn, some
connections to the Brouwerian system B (see, to this respect, note 5 to chapter
3, page 70, in [9]). These connections, even if somewhat loose, help to explain
the rationale of translating v α into �¬α.

This intricate relationship, we suggest, helps to substantiate Takeuti’s warn-
ing in [2]. Indeed, quantum logic is drastically different from the classical logic,
or from the intuitionistic logic alone: it is somehow the “logic of the duality” be-
tween intuitionism and paraconsistency. With such an understanding, the trans-
lation between the paraconsistent (or dual-intuitionistic) logic DI+ and the in-
tuitonistic logic LJ+ defined by Aoyama (definition 2.9 in [3]) makes ∧ to corre-
spond dually to ∨, and ∀ to correspond dually to ∃, while paraconsistent (ma-
terial) implication ⊃ corresponds dually to the intuitionistic pseudo-difference
operator

.−.
This means, as pointed out in [3], that the “dual” algebra of a complete

Heyting algebra (i.e., the complete Brouwerian algebra) is not a proper model
for the paraconsistent logic DI. This is in line with the well-known difficulties in
characterizing the proper algebraic counterparts of paraconsistent logic (to this
respect, an innovative proposal is given in [10] and sharpened in [11]).

The concept of quantum logic, in this way, not only boasts a modal character
but has been extended to multi-modal frameworks, as in [12]. From this perspec-
tive, obtaining logical properties such as completeness, finite model property and
decidability turn out to be relevant issues.

Properties of quantum knowledge have been compared to epistemic prop-
erties of (group) knowledge, and even quantum entanglement can be regarded
from a formal epistemic viewpoint: two particles (or systems) are entangled
if they potentially carry, without any communication: non-trivial information
about each other. But this requires taking logic seriously, and in particular the
salient features of negation.

2 From no Negation to Degrees of Negation

The dependence of quantum phenomena from properties of negation is striking:
for instance, traditional quantum logic is negation-free, but the collection of
testable properties of a quantum system is not closed under classical negation
(and neither under classical disjunction). Not only a weak (paraconsistent) kind
of negation is needed to explain some aspects of quantum superposition (as
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done in [6]), but stronger forms of negation, with modal flavor, are in order.
The modal character of quantum phenomena is made still more salient when
we observe, as sanctioned by the discussion of Section 1, that a “no” answer for
a measurement of P does not establish the negation of P, but the impossibility
of obtaining a “yes” in any measurement for P. Such a modal-like negation is
conveyed, for instance, by the orthocomplement ∼ P of P (as part of the theory
of non-distributive, orthomodular lattices).

This naturally leads to a multimodal epistemic logics, which can to charac-
terize quantum properties with computational contents, such as entanglement,
superposition, quantum gates, etc. So in [13], for instance, a logic for composite
systems, joining ideas from traditional quantum logic with multimodal concepts
is proposed; however, the resulting logic, although sound, is not shown to be com-
plete. A natural question thus is: are sophisticated logics of this kind doomed to
incompleteness?

The partnership between paraconsistent logics and modal logics is not new:
see e.g. [14] (example 93) and specially [15] for discussions and references. A sys-
tematization of the construction of classes of cathodic (with weak negations) and
anodic (purely positive) modal systems is done in [15], where it is shown that
these classes are semantically characterizable in two different ways: by means
of Kripke-style semantics, and also by means of modal possible-translations se-
mantics.

However, as we show here, modal extensions of cathodic systems PIk,l,m,n, as
the system PIVB, cannot be semantically characterized by means of Krypke-
style semantics.

A propositional language for a system S is composed by an infinite set Var of
sentential variables p, q, r and so on, and operators in the set Σ = {⊃,∧,�, ♦,¬, ◦}.
The special connective ◦ plays a crucial role in paraconsistent logics, as it ex-
presses the notion of consistency of a formula in the object-language level (more
details in [14]). Although the system in the class PIk,l,m,n we treat here do not
contain ◦ in the language, it is convenient to mention this connective since is
appears in most of the systems in [15].

The collection For of sentences of S is defined as usual in modal logics. The
elements of For are represented by lowercase Greek letters α, β, γ, and subsets
of For are represented by uppercase Greek letters Γ, ∆, Π . When necessary, the
collection of sentences will be denoted by ForS instead of For only. Consider
Γ ∪ {α} ⊆ For and let ` ⊆ ℘(For) × For be a consequence relation, where ℘(For)
is the power set of the set For.

In systems containing the consistency operator ◦, as discussed in [14], a form
of classical negation can be defined, usually called strong negation, defined as

∼α Def
= α ⊃ [p ∧ (¬p ∧ ◦p)]

From this definition all the relevant properties of classical negation are derivable,
what is useful to show several expected metamathematical results which depend
upon negation.
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A useful notion is that of a bi-valuation function v : For −→ {0, 1}, where 1
denotes the “true” value and 0 denotes the “false” value:

(Biv.1) p ∈ Var implies v(p) = 1 or v(p) = 0;
(Biv.2) v(α ⊃ β) = 1 iff v(α) = 0 or v(β) = 1;
(Biv.3) v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1;
(Biv.4) v(α) = 0 implies v(¬α) = 1;
(Biv.5) v(◦α) = 1 implies v(α) = 0 or v(¬α) = 0;
(Biv.6) v(¬¬α) = 1 implies v(α) = 1;
(Biv.7) v(¬ ◦ α) = 1 implies v(α) = 1 and v(¬α) = 1.

Such conditions on valuations permit us to obtain completeness results w.r.t.
bi-valuations for each paraconsistent system, endowed with the operator ◦. An-
other semantic characterization for the paraconsistent systems PI, mbC, bC
and Ci can be attained w.r.t. possible-translations semantics, as discussed in
[14]). From the viewpoint of combination of logics, the cathodic systems could
be seen as a result of fusion (a particular case of fibring) between modal logic
and non-modal logic as discussed in [16]. Several results about preservation of
completeness in fibring have been obtained, but in all cases classical negation
(instead of a paraconsistent negation) is involved. But such preservation results
cannot be applied when negation is not strong enough, which makes room for
incompleteness, as we show here.

3 Incompleteness and Degrees of Negation

As cathodic systems in the class PIk,l,m,n cannot define any form of classical nega-
tion, a different treatment of such systems is required since they are intrinsically
bi-modal systems (i.e., modalities cannot be inter-defined). This characteristic
permit us to obtain an incompleteness result in this class. Whether or not, how-
ever, incompleteness results can be attained to other classes of cathodic systems
is left as an open problem.

In the sequel it will be shown that the system PIVB, obtained by extending
the system PI0,0,0,0 with the axiom (VB) is an incomplete system.

Let PIVB be the system obtained from PI0,0,0,0 by adding van Benthem’s
axiom:

(VB) ♦�p ∨ �[�(�q ⊃ q) ⊃ q]

The strategy of the argument is to show that the class of frames adequate
for PIVB also validates a non-theorem of PIVB. This is shown by means of
general frames. Consider the following sentence:

(MV) �p ∨ ♦�p

The next result shows that all frames that validate (VB) also validate (MV).

Lemma 1. If F � ♦�p ∨ �[�(�q ⊃ q) ⊃ q] then F � ♦�p ∨ �p.

113



Proof. The same argument used for van Benthem’s system (see the original proof
in [17], or e.g. lemma 5.1.1 of [8]). ut

The following definition is a generalization of the notion of general frame used
by van Benthem in [17].

Definition 1. A general frame is a triple G = 〈W,R, Π〉 where F = 〈W,R〉 is a
non-trivial relational frame and Π is any collection of subsets of W called ad-
missible sets closed under the following operations:
(a) If X ∈ Π then X ∈ Π;
(b) If X,Y ∈ Π then X ∪ Y ∈ Π;
(c) If X,Y ∈ Π then X ∩ Y ∈ Π;
(d) If X ∈ Π then {w ∈ W : ∀w′ ∈ W(wRw′ implies w′ ∈ X)} ∈ Π;
(e) If X ∈ Π then {w ∈ W : ∃w′ ∈ W(wRw′ and w′ ∈ X)} ∈ Π.

The following particular general frame G0 = 〈W0,R0, Π0〉 will be helpful, de-
fined as:

– W0 = N ∪ {ω,ω + 1}
– wiR0w j iff

{
wi = ω + 1 and w j = ω
wi , ω + 1 and w j < wi

– The collection Π0 of admissible subsets of W0 is specified in the following
way:
(a) ω < A and A is finite;
(b) ω ∈ A and the complement of A is finite.

Let V : Var −→ ℘(W) be an implicit valuation, where for each variable p, V(p)
represents the set of worlds in which p is an element.

Definition 2. A model M is called admissible if, for each α, V(α) is an admis-
sible set.

Lemma 2. G0 is a general frame.

Proof. We need to show that Π0 satisfies the conditions of Definition 1. The
proof of clauses (b)–(e) appears in lemma 6.4 of [18]. It remains to show clause
(a), i.e., A ∈ Π0 implies A ∈ Π0. Supposing A ∈ Π0, we need to show that ω ∈ A

and that A is a finite set.
There are two possibilities to be considered:

1. Suppose A is a finite and that ω < A.

If ω < A then ω ∈ A. It follows that A is a finite set. Since A = A then, by

hypothesis, we have that A is a finite set.
2. Suppose A is a finite set and ω ∈ A.

Clearly, from the hypothesis ω < A and A is a finite set.

Therefore, in both cases A ∈ Π0. ut
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A sentence α is said to be G0-valid if α is valid in all admissible models on G0.
The next lemma specifies the conditions for a model to be considered admissible.

Lemma 3. A model M based on G is admissible if V(p) is admissible for all
variables p.

Proof. We need to show that, if V(p) is an admissible set, then V(α) is also an
admissible set, where α is a formula. The proof is by induction on the (usual)
complexity of α, and the argument uses Definition 1. ut

The next theorem shows that (MV) is not valid in the particular general
frame G0, which means that the system PIVB cannot be characterized by any
class F of frames, since this class also validates a non-theorem of PIVB, as
shown in Lemma 1.

Theorem 1. (MV) is not G0-valid.

Proof. Let M0 be the model based on G0 at which V(p) = ∅, i.e., p is false in all
w ∈ W0. It is clear that M0 is admissible: indeed, since ∅ ∈ Π0 and ω < ∅ and ∅ is
finite, clause (a) of the definition of admissible sets is satisfied. It is easy to check
that v(♦�p ∨ �p, ω + 1) = 0, hence M0 2 ♦�p ∨ �p. Therefore G0 2 (MV). ut

To finish, it remains to be shown that PIVB is an incomplete system, i.e.,
we need to show that the axiom (PI) is valid in G0.

Theorem 2. Any theorem of PIVB is G0-valid.

Proof. The only case that needs to be considered is the axiom (PI). Details on
other cases can be found in theorem 6.7 of [18]. Indeed, it can be readily shown
that for each w ∈ N ∪ {ω,ω + 1}, v((PI),w) = 1. Supposing that v((PI),w) = 0 a
contradiction appears in the world w, since there is no modalities involved. ut

We can thus obtain the incompleteness result for PIVB with respect to the
intended class of frames:

Theorem 3. PIVB is an incompletable modal cathodic system with respect to
Kripke semantics.

Proof. On the one hand, Lemma 1 guarantees that any frame that validates
(VB) also validates (MV). On the other hand, Theorem 2 grants that the
model M0 based on a general frame G0 validates all theorems of PIVB, while
Theorem 1 shows that this same model invalidates (MV), i.e., this shows that the
sentence (MV) can be neither a theorem of PIVB, nor of any of its extensions.
Therefore no frame can characterize (an extension of) PIVB, since each frame
will also validate a non-theorem (MV). ut
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4 Afterword

The notion of possible-translations semantics introduced in the nineties for para-
consistent logics (see [19] for a revised approach) is an inspiration for the so-
called exogenous approach to quantum logic proposed in [20]. The exogenous ap-
proach has subtle (but very relevant) distinction in comparison to the (Kripkean)
possible-worlds approach to quantum logic (see also [21]). From this perspective,
the possible-translations semantics has an inherent interrelation to quantum rea-
soning.

On the other hand, from a purely logic viewpoint, the incompleteness result
(Theorem 3) is interesting in at least two aspects. Firstly, since the system PIVB
is an extension of PI0,0,0,0, proven in [15] to be complete w.r.t. bi-valued relational
models. Therefore the incompleteness result maintains a parallel with van Ben-
them’s result in [17], in the sense of obtaining incomplete system which extends
a complete one. A second, more pertinent aspect, concerns (a very plausible) im-
munity of the second semantics, the modal possible-translations semantics, with
respect to incompleteness. Although we have no proof of such an immunity, it
is conceivable to expect that no incompleteness result with respect to modal
possible-translations semantics could be obtained, since this kind of semantics
is very general.

An open question is whether other incompleteness results could be obtained
starting from other classes of cathodic systems, where a form of classical nega-
tion is definable. The difficulty to obtain an incomplete result for those classes
(following van Benthem’s method and our generalizations) concerns the fact that
their language includes formulas of the kind ◦α and the complications of defining
appropriate notions of admissible sets involving this kind of formulas.

Are there other suitable methods in such cases? Any answer to such questions,
positive or even negative, would be illuminating, and specially relevant to the
efforts of devising multimodal epistemic logics aimed to characterize quantum
information.

What this means is that an insistence on expecting quantum logic to be-
have in conformity with traditional modalities, with their perspicuous threats of
incompleteness with regard to Kripke semantics may be unreasoned (not forget-
ting that an important result by Goldblatt in [22] shows that orthomodularity
is not first-order definable).

But there are other ways of maintaining the modal kinship between quan-
tum and modal reasoning, and at the same time the triple-sided affinity among
quantum logic, paraconsistent logic and intuitionistic logic: it is possible to de-
fine a paraconsistent (cathodic) version of the modal Brouwerian system B. The
axioms for the intuitionistic-paraconsistent system KTBCi are the following
(with the usual derivation rules of Necessitation (Nec), Modus Ponens (MP)
and Uniform Substitution (US)):

116



(A1) p ⊃ (q ⊃ p)
(A2) (p ⊃ q) ⊃ [(p ⊃ (q ⊃ r)) ⊃ (p ⊃ r)]
(A3) (p ⊃ r) ⊃ [((p ⊃ q) ⊃ r) ⊃ r]
(A4) p ⊃ [q ⊃ (p ∧ q)]
(A5) (p ∧ q) ⊃ p
(A6) (p ∧ q) ⊃ q
(PI) (p ∨ ¬p)
(mbC) ◦p ⊃ [p ⊃ (¬p ⊃ q)]
(bC) ¬¬p ⊃ p
(Ci) ¬ ◦ p ⊃ (p ∧ ¬p)
(K) �(p ⊃ q) ⊃ (�p ⊃ �q)
(T) �p ⊃ p
(B) p ⊃ �♦p

KTBCi is semantically complete with respect to Kripke semantics, and also
with respect to modal possible-translations semantics (cf. [15]). An analogous
extension from B to B+, as done in [7], could be thought here (although com-
pleteness in this case would be unknown; perhaps the extended system would
doomed to incompleteness as well).

The system PIVB being so elementary, incompleteness results of the kind
obtained in Theorem 3 may indeed represent barriers to logical expressibility of
quantum flows of information, and thus to quantum computation; it is to be re-
marked that incompleteness results for anodic (i.e., purely positive) modal logics
have also been obtained in [23]. Although incompleteness in the case of negation-
less modal logics is categorical, the case of systems endowed with some degree
of negation as PIk,l,m,n of cathodic may be rescued, as remarked, by means of the
modal possible-translations semantics (as in [15], but see [14] for discussions and
for historical references). How high this barrier can be we do not know.
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Abstract. Simulating the predictions of quantum mechanics by means
of hidden variable models requires that individual physical systems store
a minimum amount of memory. We investigate the minimum memory
required to simulate some specific predictions of quantum mechanics re-
lated to quantum nonlocality and contextuality. The required memory
becomes larger than the information carrying capacity of the correspond-
ing quantum system and the density of memory increases with the com-
plexity of the system. This suggests a new approach to the problem of
hidden variables in quantum mechanics, and provides a new insight into
the reasons why quantum resources outperform classical ones.

Keywords: Contextuality, Entanglement, Nonlocality, Memory

1 Introduction

Some predictions of quantum mechanics (QM) cannot be reproduced either by
local hidden variables (HV) models (those in which the results of local mea-
surements may not depend on spacelike separated events) [1, 2] or by noncon-
textual HV models (those in which the results of measurements may depend on
which other compatible observables are measured) [3–5]. However, QM can be
reproduced with nonlocal and contextual HV models [6–8]. While the nonlocal
communication cost for simulating quantum nonlocality has been extensively in-
vestigated [9, 10], so far no attention has been paid to another essential resource
needed to simulate QM: Memory.

The purpose of this paper is to investigate what is the minimum classical
memory required to simulate the predictions of QM for several simple scenarios
wherein the predictions of QM force HV models to be contextual or nonlocal.
All of these scenarios involve a finite number of possible measurements. The
basic assumption is that any HV model of an individual physical system can
be seen as a finite state machine that generates an output (the result of the
measurement) based on its current state (the state of the HV) and input (the
observable being measured); that is, by a k-input n-state Mealy automaton [11,
12]. A Mealy automaton consists of a sextuple (Σ,Γ, S, s0, δ, ω), where Σ is the
input alphabet (the set of observables to be measured), Γ is the output alphabet
(the possible outcomes of these measurements), S = {s1, . . . , sn} is a finite set of
states (the set of states of the HV), s1 is the initial state (an element of S); δ is the
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state-transition, which is a function of the state and the input, δ : S ×Σ → S,
and ω is the output function, which is a function of the state and the input,
ω : S × Σ → Γ . The memory needed for the automaton is therefore at least
log2 n bits. Here we are only interested in the memory necessary to identify the
state the automaton is in. A realistic implementation of the automaton would
require extra memory (for instance, to store the program), but this memory is
fixed and independent of the number and type of quantum predictions to be
simulated.

2 Memory cost of nonlocality

2.1 The Bell-CHSH inequality

We first investigate the memory required to simulate the maximum quantum
violation of the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality [1, 2],

β ≡ 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2, (1)

where Ai are local observables on Alice’s qubit, and Bi are local observables
on Bob’s qubit. All these observables have possible results −1 or +1, and Al-
ice’s (Bob’s) choice of local measurement is assumed to be spacelike separated
from Bob’s (Alice’s) result. The maximum quantum violation of inequality (1)
is βQM = 2

√
2 ≈ 2.83 [13].

We assume that there is no restriction to the nonlocal communication be-
tween Alice and Bob’s qubits, and that every pair of qubits can be described by
a single four-input (A0, A1, B0, and B1) n-state Mealy automaton. We consider
the possibility that some pairs of qubits can be described by one-state Mealy
automata (that is, by local HV models), which require log2 1 = 0 bits of memory,
while other pairs of qubits are described by nonlocal automata with a different
number of states.

Result 1: (
√

2−1) log2 3 ≈ 0.66 bits per pair suffice to simulate the maximum
quantum violation of the Bell-CHSH inequality (1).

Proof: The maximum quantum violation of inequality (1), βQM = 2
√

2 ≈
2.83, can be caused by a mixture of one-state Mealy automata giving β = 2,
with probability 2 −

√
2 ≈ 0.59, and three-state Mealy automata giving β = 4,

with probability
√

2− 1 ≈ 0.41. Therefore, the required average memory in bits
per pair of qubits is

µCHSH = (
√

2− 1) log2 3 ≈ 0.66. (2)

The only way of obtaining β = 4 is the following: When Alice measures Ai
and Bob measures Bj (whatever the order in which these measurements are
carried out: first Alice and then Bob, or first Bob and then Alice), their results
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satisfy

A0 = B0, (3a)

A0 = B1, (3b)

A1 = B0, (3c)

A1 = −B1. (3d)

In addition, it is natural to assume that the automaton satisfies repeatability,
that is, if Alice measures Ai twice on the same qubit (with no other measurement
in between), she will obtain the same result, and likewise for Bob. Therefore,
sequences like Bi, Aj , Aj , Bi, Aj must satisfy both (3) and the fact that in ev-
ery measurement the result of Bi (and Aj) turns out to be the same. These
restrictions cannot be simulated either with one-state Mealy automata (that is,
with local HV models) or with two-state Mealy automata (to prove it, check
that none of the 32768 possible four-input two-state Mealy automata satisfies
the conditions). However, it can be easily seen that the three-state automaton
characterized by the following table satisfies both conditions:

A0 A1 B0 B1

s1 ≡ +1 +3 +1 +2
s2 ≡ +1 −2 −2 +2
s3 ≡ −3 +3 +1 −3

(4)

In (4) each line represents a state si of the automaton and each column contains
the result of the measurement of the corresponding observable and the state
of the automaton after that measurement: The result is given by the sign of
the entry, and the state after the measurement by the absolute value of the
entry. The automaton is assumed to be initially in the state s1. For instance, if
the measurements are A1 (first) and (then) B1, then the automaton gives the
result A1 = +1, then changes its state from s1 into s3, and then gives the result
B1 = −1 (and ends up in the state s3). Note that we can make the marginal
probabilities equal to 1/2 for all inputs and outputs by suitably choosing different
one-state Mealy automata with β = 2 and different three-state Mealy automata
with β = 4 like (4).

2.2 Perpetual Popescu-Rohrlich boxes

Result 2: A bit of memory per pair of qubits suffices to simulate a Popescu-
Rohrlich (PR) box [14] that does not require initialization.

Proof: A PR box satisfies the correlations (3) and does not allow signaling
between Alice and Bob. These two requirements entail the marginal probabilities
to be equal to 1/2 for all inputs and outputs,

p(Ai = +1) = p(Ai = −1) =
1

2
, (5a)

p(Bi = +1) = p(Bi = −1) =
1

2
, (5b)
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for i ∈ {0, 1}. The Mealy automaton (4) does not satisfy (5). This problem can
be solved by preparing a suitable mixture of automata like (4), or by using the
following four-state Mealy automaton which satisfies (3), repeatability, and (5):

A0 A1 B0 B1

s1 ≡ +1 +3 +1 +2
s2 ≡ +1 −2 −4 +2
s3 ≡ −4 +3 +1 −3
s4 ≡ −4 −2 −4 −3

(6)

The notation used in (6) is the same as in (4). Note that (6) simulates a PR box
regardless of which of the four states si we choose as initial state. This means
that the automaton does not require any initialization and can be used as a
perpetual PR box.

2.3 Chained Bell inequalities

We can also use this method to obtain the memory cost of the maximum viola-
tion of any Bell inequality in which the maximum quantum violation does not
saturate the maximum possible violation. For example, the bipartite N -setting
Bell inequality of Braunstein and Caves (BC) [15, 16], in which Alice can choose
one out of N alternative experiments A1, A3, . . . , A2N−1, and Bob one out of
N alternative experiments B2, B4, . . . , B2N , each of them having outcomes +1
or −1,

γ ≡〈A1B2〉+ 〈B2A3〉+ 〈A3B4〉+ 〈B4A5〉+ · · ·
+ 〈A2N−1B2N 〉 − 〈B2NA1〉 ≤ 2N − 2.

(7)

The maximum quantum violation of (7) is γQM = 2N cos(π/2N) [17]. This
violation can be caused by a mixture of local (one-state) automata giving γ =
2N − 2 with probability p = N [1− cos(π/2N)] and (three-state, as can be easily
checked) nonlocal automata giving γ = 2N with probability 1− p. Therefore,

µBC(N) = N [1− cos(π/2N)] log2 3 (8)

bits of memory per pair of qubits suffice to reproduce the maximum violation of
the BC inequality (7). Note that µBC(2) = µCHSH and that µBC(N) grows with
N and tends to log2 3 ≈ 1.58 bits of memory per pair of qubits when N tends
to infinity.

3 Memory cost of quantum contextuality

3.1 Quantum contextuality for a specific qutrit state

A similar method can be applied to calculate the memory cost of simulating
the quantum violation of any noncontextual inequality (that is, any inequality
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satisfied by any noncontextual theory). A specially important case is given by the
violation of the Klyachko, Can, Binicioğlu, and Shumovsky (KCBS) inequality
[18], which is the simplest noncontextual inequality violated by a single qutrit,

κ ≡ −〈C0C1〉 − 〈C1C2〉 − 〈C2C3〉 − 〈C3C4〉 − 〈C4C0〉 ≤ 3, (9)

where Ci are observables with possible results −1 or +1 on a single qutrit system.
The maximum quantum violation on a single qutrit system is κQM = 4

√
5− 5 ≈

3.94 [19]. To test this inequality, the experimenter can measure Ci (first) and
(then) Ci+1 on a single qutrit initially prepared in a specific state.

Result 3: (2
√

5− 4) log2 3 ≈ 0.75 bits per qutrit suffice to simulate the max-
imum quantum violation of the KCBS inequality (9).

Proof: The maximum quantum violation of inequality (9), κQM = 4
√

5− 5 ≈
3.94, can be caused by a mixture of one-state Mealy automata giving κ = 3,
with probability 5− 2

√
5 ≈ 0.53, and three-state Mealy automata giving κ = 5,

with probability 2
√

5− 4 ≈ 0.47. Therefore, the average memory needed is

µKCBS = (2
√

5− 4) log2 3 ≈ 0.75 (10)

bits per qutrit.
The only way of obtaining κ = 5 is the following: When the experimenter

measures Ci (first) and (then) Ci+1, or Ci+1 and Ci, the results must satisfy

C0 = −C1, (11a)

C1 = −C2, (11b)

C2 = −C3, (11c)

C3 = −C4, (11d)

C4 = −C0. (11e)

The following three-state automaton satisfies (11) and repeatability:

C0 C1 C2 C3 C4

s1 ≡ +2 −1 +1 −1 +3
s2 ≡ +2 −2 +1 +2 −2
s3 ≡ −3 +3 +1 −3 +3

(12)

3.2 Perpetual Kochen-Specker boxes

Result 4: A bit of memory per pair suffices to simulate a Kochen-Specker-
Kyachko (KS) box [20] that does not require initialization.

Proof: A KS box gives κ = 5 and does not allow signaling between two
observers such that one of them chooses the first measurement and the other the
second one. The following automaton satisfies these requirements for any initial
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state:
C0 C1 C2 C3 C4

s1 ≡ +1 −1 +1 −2 −3
s2 ≡ −2 +4 +1 −2 +2
s3 ≡ +3 −1 −4 +3 −3
s4 ≡ −4 +4 −4 +3 +2

(13)

3.3 State-independent quantum contextuality

Now consider 15 dichotomic observables XI, . . . , ZZ with possible results −1 or
+1. The following inequality containing 15 mean values must be satisfied by any
noncontextual HV model:

ν ≡〈XI IX XX〉+ 〈XI IY XY 〉+ · · ·+ 〈ZI IZ ZZ〉
+ 〈XX Y Z ZY 〉+ 〈XY Y X ZZ〉+ 〈XZ Y Y ZX〉
− 〈XX Y Y ZZ〉 − 〈XY Y Z ZX〉 − 〈XZ YX ZY 〉 ≤ 9.

(14)

However, for any initial state of a two-qubit system, if one chooses XI = σ
(1)
x ⊗

I(2), . . . , ZZ = σ
(1)
z ⊗ σ(2)

z , where σ
(1)
x ⊗ I(2) denotes the tensor product of the

X Pauli matrix of the first qubit times the identity matrix for the second qubit,
then one obtains

νQM = 15, (15)

which is the maximum possible violation of inequality (14) [21]. Even more
interestingly, this is the first known example of a quantum prediction which,
in order to be simulated by a HV model, requires an automaton with more
memory than the information carrying capacity of the corresponding quantum
system given by its Holevo’s bound [28]. In other words, it can be proven [29]
that no four-state automaton can simulate (15); any automaton requires

µ > 2 (16)

bits of memory per pair of qubits.
Inequality (14) is an extended version of the inequality proposed in [22],

which has recently stimulated several experiments [23–27].
We can even go further and consider the natural extension to three qubits of

the inequality (14) by considering all possible observables of the form A⊗B⊗C,
where A,B,C ∈ {σx, σy, σz, I}, and all sets of four mutually compatible observ-
ables such that their product is ±I (here denoting the identity matrix of the
Hilbert space of all three qubits). The quantum violation of this inequality re-
quires more memory per qubit than that required to simulate (15). The reason
is simple: Every subset of two qubits should satisfy (15) plus additional restric-
tions. Indeed, we can also consider the corresponding inequality for 4, 5, . . . , n
qubits and more memory per qubit is needed in every step. The required density
of memory to reproduce QM increases with n.
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4 Conclusions

The minimum density of memory (in bits per qubit) required for simulating the
predictions of QM for a finite set of observables on a system of n qubits grows
with n. This suggests a new proof of the impossibility of HV models in QM. If
we assume that QM is correct and there is a bound for the density of memory a
physical system can store, then QM must be complete, in the sense that no HV
model can simulate the predictions of QM if the system is complex enough. We
have a new physical basis on which to prove the impossibility of going beyond
QM with HV theories, different than the assumption of locality. That is, we can
prove that there are no more detailed extensions of QM, even if there is no upper
bound to the velocity in which causal influences can propagate [30]. Moreover,
this also points out that one of the reasons why quantum resources outperform
classical ones is that a k-state quantum system can perform tasks which are
beyond the reach of any k-state classical automaton.
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Abstract. In contrast with software-generated randomness (called
pseudo-randomness), quantum randomness is provable incomputable, i.e.
it is not exactly reproducible by any algorithm. We provide experimental
evidence of incomputability — an asymptotic property — of quantum
randomness by performing finite tests of randomness inspired by algo-
rithmic information theory.

1 Quantum Indeterminacy

The irreducible indeterminacy of individual quantum processes postulated by
Born [1–3] implies that there exist physical “oracles,” which are capable to effec-
tively produce outputs which are incomputable. Indeed, quantum indeterminism
has been proved [4] under some “reasonable” side assumptions implied by Bell-,
Kochen-Specker- and Greenberger-Horne-Zeilinger-type theorems. Yet, as quan-
tum indeterminism is nowhere formally specified, it is important to investigate
which (classes of) measurements lead to randomness, what are the reasons for
possible distinctions, whether or not the kinds of randomness “emerging” in dif-
ferent classes of quantum measurements are “the same” or “different,” and what
are the phenomenologies or signatures of these randomness classes. Questions
about “degrees of (algorithmic) randomness” are studied in algorithmic infor-
mation theory. Here are just four types, among an infinity of others: (i) standard
pseudo-randomness produced by software like Mathematica or Maple which are
not only Turing computable but cyclic; (ii) pseudo-randomness produced by
software which is Turing computable but not cyclic (e.g., digits of π, the ratio
between the circumference and the diameter of an ideal circle, or Champer-
nowne’s constant); (iii) Turing incomputable, but not algorithmically random;
(iv) algorithmically random [5–7]. One can ask: in which of these four classes
do we find quantum randomness? Operationally, in the extreme form, Born’s
postulate could be interpreted to allow for the production of “random” finite
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strings; hence quantum randomness could be of type (iv). (Here the quotation
mark refers to the fact that randomness for finite strings is too “subjective” to be
meaningful for our analysis. The legitimacy of the experimental approach comes
from characterizations of random sequences in terms of the degrees of incom-
pressibility of their finite prefixes. [5–7].) A sequence which is not algorithmically
random but Turing incomputable can, for instance, be obtained from an algorith-
mically random sequence x1x2 · · ·xn · · · by inserting a 0 in between any adjacent
original bits, i.e. obtaining the sequence x10x20 · · · 0xn0 · · · This transformation
destroys algorithmic randomness because obvious correlations have appeared;
Turing incomputability is invariant under this transformation because a copy of
the original sequence is embedded in the new one. Yet much more subtler corre-
lations among subsequences of Turing incomputable sequences may exist, thus
making them compressible and algorithmically nonrandom. There is no a priori
reason to interpret Born’s indeterminism by its strongest formal expression; i.e.,
in terms of algorithmic randomness.

Quantum randomness produced by quantum systems which have no clas-
sical interpretation is provable [4] Turing incomputable. More precisely, if the
experiment would run under ideal conditions “to infinity,” the resulting infinite
sequence of bits would be Turing incomputable; i.e., no Turing machine (or al-
gorithm) could reproduce exactly this infinite sequence of digits. This result has
many consequence; here is one example. The experiment could produce a billion
of 0s, but not all bits produced will be 0. A stronger form of incomputabil-
ity holds true: every Turing machine (or algorithm) can reproduce exactly only
finitely many scattered digits of that infinite sequence. Yet this proof stops short
of showing that the sequence produced by such a quantum experiment is algo-
rithmically random; i.e., it is unknown whether or not such a sequence is or is not
algorithmically random. One of the strategies toward answering this question is
to empirically perform tests “against” the algorithmic randomness hypothesis.

Our (more modest) aim is to present tests capable of distinguishing com-
putable from incomputable sources of “randomness” by examining (long, but)
finite prefixes of infinite sequences. Such differences are guaranteed to exist by
[4], but, because computability is an asymptotic property, there was no guarantee
that finite tests can “pick” differences in the prefixes that we have analyzed.

2 Tests of Experimental Quantum Indeterminacy

Based on Born’s postulate, several quantum random number generators based on
beam splitters have recently been proposed and realized [8–15]. In what follows
a detailed analysis of bit strings of length 232 obtained by two such quantum
random number generators will be presented — the first analysis of a set of
quantum bits of this size (the size correlates well with the square root of the
cycle length used by cyclic pseudo-random generators; randomness properties of
longer strings generated in this way are impaired). We will compare the perfor-
mance of quantum random number generators with software-generated number
generators on randomness inspired by algorithmic information theory (which
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complement some commonly used statistical tests implemented in “batteries”
of test suites such as, for instance, diehard [16], NIST [17], or TestU01 [18]).
The standard test suites are often based on tests which are not designed for
physical random number generators, but rather to quantify the quality of the
cyclic pseudo-random numbers generated by algorithms. As we would like to
separate “truly” random sequences from software-generated random sequences,
the emphasis is on the former type of tests.

The tests based on algorithmic information theory directly analyze ran-
domness, and thus the strongest possible form of incomputability. They differ
from tests employed in the standard randomness batteries as they depend on
irreducible algorithmic information content, which is constant for algorithmic
pseudo-random sequences. Some tests are related to each other, as for instance
sequences which are not Borel normal (cf. below) could be algorithmically com-
pressed; the analysis of results helps understanding subtle differences at the edge
of incomputability/algorithmic randomness. All tests depend on the size of the
analyzed strings; the legitimacy of our approach is given by the fact that al-
gorithmic randomness of an infinite sequence can be “uniformly read” in its
prefixes (cf. [7]).

3 Data Sources

The analyzed quantum data consist of 10 quantum random strings generated
with the commercially available Quantis device [19], based on research of a group
in Geneva [11], as well as 10 quantum random strings generated by the Vienna
IQOQI group [20]. The pseudo-random data consist of 10 pseudo-random strings
produced by Mathematica 6 [21], and 10 pseudo-random strings produced by
Maple 11 [22], as well as 10 strings of 232 bits from the binary expansion of π
obtained from the University of Tokyo’s supercomputing center [23].

The signals of the Quantis device are generated by a light emitting diode
producing photons which are then transmitted toward a beam splitter (a semi-
transparent mirror) and two single-photon detectors (detectors with single-
photon resolution) to record the outcomes associated with the symbols “0” and
“1,” respectively [19]. Due to hardware imbalances which are difficult to over-
come at this level, Quantis processes this raw data by un-biasing the sequence
by a von Neumann type normalization: The biased raw sequence of zeroes and
ones is partitioned into fixed subsequences of length two; then the even parity
sequences “00” and “11” are discarded, and only the odd parity ones “01” and
“10” are kept. In a second step, the remaining sequences are mapped into the
single symbols 01 7→ 0 and 10 7→ 1, thereby extracting a new unbiased sequence
at the cost of a loss of original bits [24, p. 768].

This normalization method requires that the events are (temporally) uncor-
related and thus independent. (For the sake of a simple counterexample, the
von Neumann normalization of the sequences 010101 · · · or 1100110011 · · · are
the constant-0 sequence 000 · · · and the empty sequence.) Under the indepen-
dence hypothesis, the normalized sequences are Borel normal with probability
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one [25]; e.g., all finite subsequences of length n occur with their expected asymp-
totic frequencies 2−n. (Alas, see [26] for some pitfalls when transforming such
sequences.)

The signals of the Vienna Institute for Quantum Optics and Quantum Infor-
mation (IQOQI) group were generated with photons from a weak blue LED light
source which impinged on a beam splitter without any polarization sensitivity
with two output ports associated with the codes “0” and “1,” respectively [10].
There was no pre- or post-processing of the raw data stream, in particular no
von Neumann normalization as discussed for the Quantis device; however the
output was constantly monitored (the exact method is subject to a patent pend-
ing). In very general terms, the setup needs to be running for at least one day
to reach a stable operation. There is a regulation mechanism which keeps track
of the bias between “0” and “1,” and tunes the random generator for perfect
symmetry. Each data file was created in one continuous run of the device lasting
over hours.

We have employed the extended cellular automaton generator default ofMath-
ematica 6’s pseudo-random function. It is based on a particular five-neighbor
rule, so each new cell depends on five nonadjacent cells from the previous
step [21]. Maple 11 uses a Mersenne Twister algorithm to generate a random
pseudo-random output [22].

4 Testing Incomputability and Randomness

The tests we performed can be grouped into: (i) two tests based on algorithmic
information theory, (ii) statistical tests involving frequency counts (Borel nor-
mality test), (iii) a test based on Shannon’s information theory, and (iv) a test
based on random walks.

In Figures 1–5 the graphical representation of the results is rendered in terms
of box-and-whisker plots, which characterize groups of numerical data through
five characteristic summaries: test minimum value, first quantile (representing
one fourth of the test data), median or second quantile (representing half of
the test data), third quantile (representing three fourths of the test data), and
test maximum value. Mean and standard deviation of the data representing the
results of the tests are calculated. Tables containing the experimental data and
the programs used to generate the data can be downloaded from our extended
paper [27].

4.1 Book stack randomness test

The book stack (also known as “move to front”) test [28, 29] is based on the fact
that compressibility is a symptom of less randomness.

The results, presented in Figure 1 and Table 1, are derived from the original
count, the count after the application of the transformation, and the differ-
ence. The key metric for this test is the count of ones after the transformation.
The book stack encoder does not compress data but instead rewrites each byte
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with its index (from the top/front) with respect to its input characters being
stacked/moved-to-front. Thus, if a lot of repetitions occur (i.e., a symptom of
non-randomness), then the output contains more zeros than ones due to the
sequence of indices generally being smaller numerically.

Maple Mathematica Quantis Vienna Π

2.´ 104
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6.´ 104

8.´ 104

1.´ 106

1.2´ 106

1.4´ 106

Fig. 1. (Color online) Box-and-whisker plot for the results of the “book stack” ran-
domness test.

4.2 Solovay-Strassen probabilistic primality test

The second algorithmic test, based on the Solovay-Strassen probabilistic primal-
ity test, uses Carmichael (composite) numbers which are “difficult” to factor, to
determine the quality of randomness by computing how fast the probabilistic
primality test reaches the verdict “composite” [30, 31].

To test whether a positive integer n is prime, we take k natural numbers
uniformly distributed between 1 and n−1, inclusive, and, for each chose i, check
whether the predicate W (i, n) holds. If this is the case we say that “i is a witness
of n’s compositeness”. If W (i, n) holds for at least one i then n is composite;
otherwise, the test is inconclusive, but in this case if one declares n to be prime
then the probability to be wrong is smaller than 2−k.

This is due to the fact that at least half i’s from 1 to n−1 satisfy W (i, n) if n
is indeed composite, and none of them satisfy W (i, n) if n is prime [30]. Selecting
k natural numbers between 1 and n− 1 is the same as choosing a binary string
s of length n − 1 with k 1’s such that the ith bit is 1 iff i is selected. Ref. [31]

131



Table 1. Statistics for the results of the “book stack” randomness test.

Descriptive min Q1 median Q3 max mean sd
statistics

Maple 7964 34490 49220 69630 108700 53410 33068.58
Mathematica 4508 13020 24110 43450 62570 27940 19406.03

Quantis 28600 60480 87780 106700 156100 89990 41545.76
Vienna 9110 38420 57720 73220 97660 53860 27938.92

π 8551 35480 42100 52870 78410 41280 20758.46

contains a proof that, if s is a long enough algorithmically random binary string,
then n is prime iff Z(s, n) is true, where Z is a predicate constructed directly
from conjunctions of negations of W 4.

A Carmichael number is a composite positive integer k satisfying the con-
gruence bk−1 ≡ 1(modk) for all integers b relative prime to k. Carmichael num-
bers are composite, but are difficult to factorize and thus are “very similar”
to primes; they are sometimes called pseudo-primes. Carmichael numbers can
fool Fermat’s primality test, but less the Solovay-Strassen test. With increasing
values, Carmichael numbers become “rare” 5.

We used the Solovay-Strassen test for all Carmichael numbers less than
1016—computed in Ref. [32, 33]—with numbers selected according to increasing
prefixes of each sample string till the algorithm returns a non-primality verdict.
The metric is given by the length of the sample used to reach the correct verdict
of non-primality for all of the 246683 Carmichael numbers less than 1016. [We
started with k = 1 tests (per each Carmichael number) and increase k until the
metric goal is met; as k increases we always use new bits (never recycle) from
the sample source strings.] The results are presented in Figure 2 and Table 2.

Table 2. Statistics for the results based on the Solovay-Strassen probabilistic primality
test.

Descriptive min Q1 median Q3 max mean sd
statistics

Maple 93.0 96.0 101.0 113.5 120.0 104.9 10.57723
Mathematica 93.0 97.0 109.0 132.3 142.0 113.5 19.60867

Quantis 99.0 103.3 113.0 121.3 130.0 112.6 10.66875
Vienna 82.0 100.3 104.5 109.0 119.0 103.5 11.03781

π 84.0 91.8 106.0 110.8 128.0 104.7 10.66875

4 In fact, every “decent” Monte Carlo simulation algorithm in which tests are chosen
according to an algorithmic random string produces a result which is not only true
with high probability, but rigorously correct [34].

5 There are 1,401,644 Carmichael numbers in the interval [1, 1018].
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Fig. 2. (Color online) Box-and-whisker plot for the results based on the Solovay-
Strassen probabilistic primality test.

4.3 Borel normality test

Borel normality — requesting that every binary string appears in the sequence
with the correct probability 2−n for a string of length n — served as the first
mathematical definition of randomness [25]. A sequence is (Borel) normal if every
binary string appears in the sequence with the right probability (which is 2−n

for a string of length n). A sequence is normal if and only it is incompressible
by any information lossless finite-state compressor [35], so normal sequences are
those sequences that appear random to any finite-state machine.

Every algorithmic random infinite sequence is Borel normal [36]. The con-
verse implication is not true: there exist computable normal sequences (e.g.,
Champernowne’s constant).

Normality is invariant under finite variations: adding, removing, or changing
a finite number of bits in any normal sequence leaves it normal. Further, if a
sequence satisfies the normality condition for strings of length n+1, then it also
satisfies normality for strings of length n, but the converse is not true.

Normality was transposed to strings in Ref. [36]. In this process one has
to replace limits with inequalities. As a consequence, the above two properties,
which are valid for sequences, are no longer true for strings.

For any fixed integer m > 1, consider the alphabet Bm = {0, 1}m consisting
of all binary strings of length m, and for every 1 ≤ i ≤ 2m denote by Nm

i (x)
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the number of occurrences of the lexicographical ith binary string of length
m in the string x (considered over the alphabet Bm). By |x|m we denote the
length of x over Bm; |x|1 = |x|. A string x is Borel normal if for every natural
1 ≤ m ≤ log2 log2 |x|,

∣∣∣∣
Nm

j (x)

|x|m
− 2−m

∣∣∣∣ ≤
√

log2 |x|
|x|

,

for every 1 ≤ j ≤ 2m. In Ref. [36] it is shown that almost all algorithmic random
strings are Borel normal.

First test we count the maximum, minimum and difference of non-overlapping
occurrences ofm-bit (m = 1, . . . , 5) strings in each sample string. Then we tested
the Borel normality property for each sample string and found that almost all
strings pass the test, with some notable exceptions. We found that several of
the Vienna sequences failed the expected count range for m = 2 and a few of
the Vienna sequences were outside the expected range for m = 3 and m = 4
(some less then the expected minimum count and some more than the expected
maximum count). The only other bit sequence that was outside the expected
range count was one of the Mathematica sequences that had a too big of a count
for k = 1. Figure 3 depicts a box-and-whisker plot of the results. This is followed
by statistical (numerical) details in Table 3.

Maple Mathematica Quantis Vienna Π
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Fig. 3. (Color online) Box-and-whisker plot for the results for tests of the Borel nor-
mality property.
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Table 3. Statistics for the results for tests of the Borel normality property.

Descriptive min Q1 median Q3 max mean sd
statistics

Maple 22430 47170 61990 76130 94510 60210 21933.52
Mathematica 8572 25500 40590 55650 86430 41870 23229.77

Quantis 146800 185100 210500 226600 260000 207200 33515.65
Vienna 77410 340200 350500 392500 260000 337100 103354.3

π 14260 28860 40880 47860 79030 40220 17906.21

4.4 Test based on Shannon’s information theory

The next test computes “sliding window” estimations of the Shannon entropy
L1
n, . . . , L

t
n according to the method described in [37]: a smaller entropy is a

symptom of less randomness. The results are presented in Figure 4 and Table 4.

Maple Mathematica Quantis Vienna Π
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Fig. 4. (Color online) Box-and-whisker plot for average results in “sliding window”
estimations of the Shannon entropy.

135



Table 4. Statistics for average results in “sliding window” estimations of the Shannon
entropy.

Descriptive min Q1 median Q3 max mean sd
statistics

Maple 0.9772 0.9781 0.9784 0.9787 0.9788 0.9783 0.0005231617
Mathematica 0.9776 0.9781 0.9783 0.9785 0.9800 0.9783 0.0006654936

Quantis 0.9779 0.9783 0.9783 0.9786 0.9795 0.9784 0.0004522699
Vienna 0.9772 0.9777 0.9784 0.9790 0.9792 0.9783 0.0006955834

π 0.9779 0.9784 0.9788 0.9790 0.9799 0.9788 0.0006062724

4.5 Test based on random walks

A symptom of non-randomness of a string is detected when the plot generated
by viewing a sample sequence as a 1D random walk meanders “less away” from
the starting point (both ways); hence the max-min range is the metric.

The fifth test is thus based on viewing a random sequence as a one-
dimensional random walk; whereby the successive bits, associated with an in-
crease of one unit per bit of the x-coordinate, are interpreted as follows: 1 =“move
up,” and 0 =“move down” on the y-axis. In this way a measure is obtained for
how far away one can reach from the starting point (in either positive or nega-
tive) from the starting y-value of 0 that one can reach using successive bits of
the sample sequence. Figure 5 and Table 5 summarize the results.

Table 5. Statistics for the results of the random walk tests.

Descriptive min Q1 median Q3 max mean sd
statistics

Maple 67640 88730 126400 162500 180500 125300 42995.59
Mathematica 73500 84760 98110 103400 120300 96450 14685.34

Quantis 138200 161600 209000 250200 294200 211300 55960.23
Vienna 92070 130200 155600 167600 226900 152900 36717.55

π 58570 70420 82800 91920 107500 82120 14833.75

5 Statistical Analysis of Randomness Tests Results

In what follows the significance of results corresponding to each randomness
test applied to all five sources are analyzed by means of some statistical com-
parison tests. The Kolmogorov-Smirnov test for two samples [38] determines
if two datasets differ significantly. This test has the advantage of making no
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Fig. 5. (Color online) Box-and-whisker plot for the results of the random walk tests.

prior assumption about the distribution of data; i.e., it is non-parametric and
distribution free.

The Kolmogorov-Smirnov test returns a p-value, and the decision “the dif-
ference between the two datasets is statistically significant” is accepted if the p-
value is less than 0.05; or, stated pointedly, if the probability of taking a wrong
decision is less than 0.05. Exact p-values are only available for the two-sided
two-sample tests with no ties.

In some cases we have tried to double-check the decision “no significant
differences between the datasets” at the price of a supplementary, plausible
distribution assumption. Therefore, we have performed the Shapiro-Wilk test
for normality [39] and, if normality is not rejected, we have assumed that the
datasets have normal (Gaussian) distributions. In order to be able to compare
the expected values (means) of the two samples, the Welch t-test [40], which is a
version of Student’s test, has been applied. In order to emphasize the relevance
of p-values less than 0.05 associated with Kolmogorov-Smirnov, Shapiro-Wilk
and Welch’s t-tests, they are printed in boldface and discussed in the text.

5.1 Book stack randomness test

The results of the Kolmogorov-Smirnov test associated with the “book-stack”
tests are enumerated in Table 6. Statistically significant differences are identified
for Quantis versus Mathematica and π.

As more compression is a symptom of less randomness, the corresponding
ranking of samples is as follows: 〈Quantis〉 = 89988.9 > 〈Vienna〉 = 53863.8 >
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Table 6. Kolmogorov-Smirnov test for the “book-stack” tests.

Kolmogorov-Smirnov Mathematica Quantis Vienna π
test p-values

Maple 0.4175 0.1678 0.9945 0.4175
Mathematica 0.0021 0.1678 0.4175

Quantis 0.1678 0.0123
Vienna 0.4175

〈Maple〉 = 53411.6 > 〈π〉 = 41277.5 > 〈Mathematica〉 = 27938.3. The Shapiro-
Wilk tests results are presented in Table 7.

Table 7. Shapiro-Wilk test for the “book-stack” tests.

Shapiro-Wilk test Maple Mathematica Quantis Vienna π

p-value 0.7880 0.4819 0.7239 0.8146 0.5172

Since normality is not rejected for any string, we apply the Welch’s t-test
for the comparison of means. The results are enumerated in Table 8. Significant
differences between the means are identified for the following sources: (i) Quantis
versus all other sources (Maple, Mathematica, Vienna, π); and (ii) Vienna versus
Mathematica and Maple (as already mentioned).

Table 8. Welch’s t-test for the “book-stack” tests.

p-value Mathematica Quantis Vienna π

Maple 0.0535 0.0436 0.974 0.3412
Mathematica 0.0009 0.0283 0.1551

Quantis 0.0368 0.0054
Vienna 0.2690

5.2 Solovay-Strassen probabilistic primality test

The Kolmogorov-Smirnov test results for this test are presented in Table 9, where
no significant differences are detected.
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The Shapiro-Wilk test results are presented in Table 10. Since there is no
clear pattern of normality for the data, the application of Welch’s t-test is not
appropriate.

Table 9. Kolmogorov-Smirnov test for the Solovay-Strassen tests.

Kolmogorov-Smirnov Mathematica Quantis Vienna π
test p-values

Maple 0.7591 0.4005 0.7591 0.7591
Mathematica 0.7591 0.7591 0.7591

Quantis 0.4005 0.7591
Vienna 0.9883

Table 10. Shapiro-Wilk test for the Solovay-Strassen tests.

Shapiro-Wilk test Maple Mathematica Quantis Vienna π

p-value 0.0696 0.0363 0.4378 0.6963 0.4315

5.3 Borel test of normality

The results of the Kolmogorov-Smirnov test are presented in Table 11.

Table 11. Kolmogorov-Smirnov test for the Borel normality tests.

Kolmogorov-Smirnov Mathematica Quantis Vienna π
test p-values

Maple 0.4175 < 10−4 0.0002 0.1678
Mathematica < 10−4 0.0002 0.9945

Quantis 0.0002 < 10−4

Vienna 0.0002

Statistically significant differences are identified for (i) Quantis versus Maple,
Mathematica and π; (ii) Vienna versus Maple, Mathematica and π; and (iii)
Quantis versus Vienna.
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Note that

1. Pseudo-random strings pass the Borel normality test for comparable, rela-
tively small (with respect to quantum strings; cf. below), numbers of counts:
if the angle brackets 〈x〉 stand for the statistical mean of tests on x, then
〈Maple〉 = 60210, 〈Mathematica〉 = 41870, 〈π〉 = 40220).

2. Quantum strings pass the Borel normality test only for “much larger num-
bers” of counts (〈Quantis〉 = 207200, 〈Vienna〉 = 337100).

As a result, the Borel normality test detects and identifies statistically signifi-
cantly differences between all pairs of computable and incomputable sources of
“randomness.”

5.4 Test based on Shannon’s information theory

The results of the Kolmogorov-Smirnov test are presented in Table 12. No signifi-
cant differences are detected. The descriptive statistics data for the results of this
test indicates almost identical distributions corresponding to the five sources.

Table 12. Kolmogorov-Smirnov test for Shannon’s information theory tests.

Kolmogorov-Smirnov Mathematica Quantis Vienna π
test p-values

Maple 0.7870 0.7870 0.7870 0.1678
Mathematica 0.7870 0.4175 0.0525

Quantis 0.4175 0.1678
Vienna 0.4175

The results of the Shapiro-Wilk test associated with a test based on Shan-
non’s information theory are presented in Table 13. Since there is no clear pattern
of normality for the data, the application of Welch’s t-test is not appropriate.

Table 13. Shapiro-Wilk test for Shannon’s information theory tests.

Shapiro-Wilk test Maple Mathematica Quantis Vienna π

p-value 0.1962 0.0189 0.0345 0.3790 0.8774
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5.5 Test based on random walks

The Kolmogorov-Smirnov test results associated with test based on random
walks are presented in Table 14. Statistically significant differences are identified
for: (i) Quantis versus all other sources (Maple, Mathematica, Vienna and π);
(ii) Vienna versus Mathematica, Vienna (as already mentioned) and π; and (iii)
Maple versus π.

Quantum strings move farther away from the starting point than the pseudo-
random strings; i.e., 〈Quantis〉 > 〈Vienna〉 > 〈Maple〉 > 〈Mathematica〉 > 〈π〉.

Table 14. Kolmogorov-Smirnov test for the random walk tests.

Kolmogorov-Smirnov Mathematica Quantis Vienna π
test p-values

Mathematica 0.1678 0.0123 0.4175 0.0525
Quantis < 10−4 0.0021 0.1678
Vienna 0.0525 < 10−4

π 0.0002

It was quite natural to double-check the conclusion “Quantis and Vienna do
not exhibit significant differences.” Hence we run the Shapiro-Wilk test, which
concludes that normality is not rejected; cf. Table 15.

Table 15. Shapiro-Wilk test for the random walk tests.

Shapiro-Wilk test Maple Mathematica Quantis Vienna π

p-value 0.2006 0.9268 0.5464 0.8888 0.9577

Next, we apply the Welch’s t-test for the comparison of means. The results
are given in Table 16. Significant differences between the means are identified
for the following sources: (i) Quantis versus all other sources (Maple, Quantis,
Vienna, π); (ii) Vienna versusMathematica, Quantis (as already mentioned) and
π; (iii) Maple versus π.

6 Summary

Tests based on algorithmic information theory analyze algorithmic random-
ness, the strongest possible form of incomputability. In this respect they differ
from tests employed in the standard test batteries, as the former depend on
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Table 16. Welch’s t-tests for the random walk tests.

p-value Mathematica Quantis Vienna π

Maple 0.06961 0.0013 0.1409 0.0119
Mathematica < 10−4 0.0007 0.0435

Quantis 0.0143 < 10−4

Vienna 0.0001

irreducible algorithmic information content, which is constant for algorithmic
pseudo-random generators. Thus the set of randomness tests performed for our
analysis could in principle be expected to be “more sensitive” with respect to
differentiating between quantum randomness and algorithmic types of “quasi-
randomness” than statistical tests alone.

All tests have produced evidence — with different degrees of statistical signifi-
cance — of differences between quantum and non-quantum sources. In summary:

1. For the test for Borel normality — the strongest discriminator test — statis-
tically significant differences between the distributions of datasets are iden-
tified for (i) Quantis versus Maple, Mathematica and π; (ii) Vienna versus
Maple, Mathematica and π; and (iii) Quantis versus Vienna.
Not only that the average number of counts is larger for quantum sources,
but the increase is quite significant: Quantis is 3.5− 5 times larger than the
corresponding average number of counts for software-generated sources, and
Vienna is 5− 8 times larger than those values.

2. For the test based on random walks, statistically significant differences be-
tween the distributions of datasets are identified for: (i) Quantis versus all
other sources (Maple, Mathematica, Vienna and π); (ii) Vienna versusMath-
ematica, Vienna and π. Quantum strings move farther away from the start-
ing point than the pseudo-random strings; i.e., 〈Quantis〉 > 〈Vienna〉 >
〈Maple〉 > 〈Mathematica〉 > 〈π〉.

3. For the “book-stack” test, significant differences between the means are iden-
tified for the following sources: (i) Quantis versus all other sources (Maple,
Mathematica, Vienna, π); and (ii) Vienna versus Mathematica and Maple.

4. For the test based on Shannon’s information theory, as well as for the
Solovay-Strassen test, no significant differences among the five chosen
sources are detected. In the first case the reason may come from the fact
that averages are the same for all samples. In the second case the reason
may be due to the fact that the test is based solely on the behavior of
algorithmic random strings and not on a specific property of randomness.

We close with a cautious remark about the impossibility to formally or ex-
perimentally “prove absolute randomness.” Any claim of randomness can only
be secured relative to, and with respect to, a more or less large class of laws or be-
haviors, as it is impossible to inspect the hypothesis against an infinity of — and
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even less so all — conceivable laws. To rephrase a statement about computabil-
ity [41, p. 11], “how can we ever exclude the possibility of our presented, some
day (perhaps by some extraterrestrial visitors), with a (perhaps extremely com-
plex) device that “computes” and “predicts” a certain type of hitherto “random”
physical behavior?”
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Abstract. Proving that a dynamical system is chaotic is a central prob-
lem in chaos theory [11]. In this note we apply the computational method
developed in [4, 2, 3] to show that Fermat’s last theorem is in the lowest
complexity class CU,1. Using this result we prove the existence of a two-
dimensional Hamiltonian system for which the proof that the system has
a Smale horseshoe is in the class CU,1, i.e. it is not too complex.

1 Introduction

A system is chaotic if small differences in initial conditions could yield widely
diverging outcomes; for such a system long-term prediction is in general impos-
sible. Even deterministic systems whose dynamics are fully determined by their
initial conditions, and no random elements are involved, can be chaotic [13, 8].

There are only few “bridges” between chaotic dynamical systems and com-
plexity theories, in particular algorithmic information theory. Recently, [9] showed
that in classical chaotic dynamics, typicality corresponds exactly to Schnorr ran-
domness; this means that a chaotic system may produce a computable sequence
of bits provided the initial point is suitable chosen, but this event has probability
zero (the set of initial points can be infinite).

Virtually any “interesting” question about non-trivial dynamical systems is
undecidable. Undecidability does not imply the impossibility to prove non-trivial
properties of dynamical systems, in particular, chaoticity: it says that there is
no general method, new specifically designed methods are required for different
problems.

How difficult is to prove chaoticity? Building on results in [15, 12] in [7]
a two-dimensional Hamiltonian system H was constructed with the property
that in Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC) proving
the existence of a Smale horseshoe in H is equivalent to proving Fermat’s last
theorem. We say that “ZFC proves s” in case there is a proof in ZFC for s. We
can now state more precisely the result described above:

Theorem 1 [7] Assume ZFC is arithmetically sound (that is, any theorem of
arithmetic proved by ZFC is true). Then, one can effectively construct in the for-
mal language of ZFC the expression describing a two-dimensional Hamiltonian
system H such that ZFC proves that H has a Smale horseshoe iff ZFC proves
Fermat’s last theorem.
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The choice of the Fermat’s last theorem in [7] was motivated by the contrast
between the short length of this elementary statement and the belief that any
proof of the theorem has to be very complicated; this belief was indeed confirmed
by the proof in [17].

Is the excruciating long proof of the Fermat’s last theorem [17] a good in-
dication that any proof that the corresponding two-dimensional Hamiltonian
system is chaotic should be very complex, hence proving chaoticity is a difficult
problem?

First, the fact that the known proof is complex is not a proof that every
proof for Fermat’s last theorem is complex.

Secondly, the result proven in [10]—which shows that in ZFC one can (effec-
tively) find infinite sets of trivially true theorems which require as long proofs
as the hardest theorems—indicates that the length of a proof may not be an
adequate complexity measure for how complicated/deep the theorem is. In the
words of Hartmanis [10]:

In every formalization, infinite sets of trivial theorems will require very
long proofs. . . . It also gives a warning that a necessarily long proof in
a formal system does not certify that the result is non-trivial.

Using the method developed in [4, 2, 3] we prove that Fermat’s last theorem
is in the class CU,1, hence from this point of view its complexity is low.

The paper is organised as follows. In the next section we present a short
proof for Theorem 1; in section 3 we briefly describe the complexity measure;
in section 4 we use this measure to obtain an upper bound on the complexity
of Fermat’s last theorem which shows that this statement is in the class CU,1
and this bound is transferred to the statement regarding the chaoticity of a
specific two-dimensional Hamiltonian system via the equivalence in Theorem 1;
in section 5 we present some conclusions and an open problem.

2 A Proof for Theorem 1

In [7] Theorem 1. was proved using Richardson’e lemma from Richardson [15],
Caviness [5] and Wang [16]. We present here a shorter direct proof avoiding the
use of Richardson’e lemma.

Proof. Let b be Cantor’s bijection on non-negative integers: b(i, j) = (i+j)(i+j+
1)/2 + i. Denote by pr1,pr2 the inverses of b: b(pr1(t),pr2(t)) = t, pr1(b(i, j)) =
i,pr2(b(i, j)) = j.

Fermat’s last theorem states that the equality (x + 1)m+3 + (y + 1)m+3 =
(z + 1)m+3 is not valid for every non-negative integers x, y, z,m. It is seen that
this is equivalent to the statement ∀n[Pred(n)], where Pred(n) is the computable
predicate

(pr1(pr1(pr1(n))))pr2(n) + (pr2(pr1(pr1(n))))pr2(n)

6= (pr2(pr1(n)))pr2(n) and n ≥ 272.
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We denote by h and k the Hamiltonian for the two-dimensional system with
a Smale horseshoe as defined by Holmes and Marsden [12] (their Example 4) and
the Hamiltonian for the free particle, respectively. Clearly, the systems h and k
can be represented in the formal language of ZFC. Define the Hamiltonian Hπ
as a linear combination of h, k:

Hπ(q1, . . . , qn, p1, . . . , pn) = Pred(m) · h(q1, . . . , qn, p1, . . . , pn)

+(1− Pred(m)) · k(q1, . . . , qn, p1, . . . , pn).

In view of its definition, Hπ can be represented in the formal language of
ZFC and we have

Hπ(q1, . . . , qn, p1, . . . , pn) = h(q1, . . . , qn, p1, . . . , pn) iff ZFC proves π,

hence

ZFC proves π iff ZFC proves that Hπ has a Smale horseshoe.

3 A Complexity Measure

In this section we present a complexity measure [4, 2, 3] for Π1-statements (i.e.
statements of the form “∀nPred(n)”, where Pred is a computable predicate)
defined by means of register machine programs.

We use a fixed “universal formalism” for programs, more precisely, a univer-
sal self-delimiting Turing machine U . The machine U (which is fully described
below) has to be minimal in the sense that none of its instructions can be sim-
ulated by a program for U written with the remaining instructions.

To every Π1–problem σ = ∀mP (m) we associate the algorithm ΠP = inf{n :
P (n) = false} which systematically searches for a counter-example for σ. There
are many programs (for U) which implement ΠP ; without loss of generality, any
such program will be denoted also by ΠP . Note that σ is true iff U(ΠP ) never
halts.

The complexity (with respect to U) of a Π1–problem σ is defined by the
length of the smallest-length program (for U) ΠP—defined as above—where
minimisation is calculated for all possible representations of σ as σ = ∀nP (n):1

CU (σ) = min{|ΠP | : σ = ∀nP (n)}.

Because the complexity CU is incomputable, we can work only with upper
bounds for CU . As the exact value of CU is not important, following [3] we
classify Π1–problems into the following classes:

CU,n = {σ : σ is a Π1–problem, CU (σ) ≤ n kbit2}.
1 For CU it is irrelevant whether σ is known to be true or false. In particular, the

program containing the single instruction halt is not a ΠP program, for any P .
2 A kilobit (kbit or kb) is equal to 210 bits.
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We briefly describe the syntax and the semantics of a register machine lan-
guage which implements a (natural) minimal universal prefix-free binary Turing
machine U used for evaluating the complexity of Fermat’s last theorem, a Π1–
problem.

Any register program (machine) uses a finite number of registers, each of
which may contain an arbitrarily large non-negative integer.

By default, all registers, named with a string of lower or upper case letters,
are initialised to 0. Instructions are labeled by default with 0,1,2,. . .

The register machine instructions are listed below. Note that in all cases R2
and R3 denote either a register or a non-negative integer, while R1 must be a
register. When referring to R we use, depending upon the context, either the
name of register R or the non-negative integer stored in R.

=R1,R2,R3

If the contents of R1 and R2 are equal, then the execution continues at the R3-
th instruction of the program. If the contents of R1 and R2 are not equal, then
execution continues with the next instruction in sequence. If the content of R3
is outside the scope of the program, then we have an illegal branch error.

&R1,R2

The contents of register R1 is replaced by R2.

+R1,R2

The contents of register R1 is replaced by the sum of the contents of R1 and R2.

!R1

One bit is read into the register R1, so the contents of R1 becomes either 0 or
1. Any attempt to read past the last data-bit results in a run-time error.

%

This is the last instruction for each register machine program before the input
data. It halts the execution in two possible states: either successfully halts or it
halts with an under-read error.

A register machine program consists of a finite list of labeled instructions
from the above list, with the restriction that the halt instruction appears only
once, as the last instruction of the list. The input data (a binary string) follows
immediately after the halt instruction. A program not reading the whole data or
attempting to read past the last data-bit results in a run-time error. Some pro-
grams (as the ones presented in this paper) have no input data; these programs
cannot halt with an under-read error.
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The instruction =R,R,n is used for the unconditional jump to the n-th in-
struction of the program. For Boolean data types we use integers 0 = false and
1 = true.

For longer programs it is convenient to distinguish between the main program
and some sets of instructions called “routines” which perform specific tasks for
another routine or the main program. The call and call-back of a routine are
executed with unconditional jumps.

To compute an upper bound on the complexity of the Fermat last theorem we
need to compute the size in bits of the program ΠFermat, so we need to uniquely
code in binary the programs for U . To this aim we use a prefix-free coding as
follows.

The binary coding of special characters (instructions and comma) is the
following (ε is the empty string):

special characters code instruction code
, ε + 111
& 01 ! 110
= 00 % 100

Table 1

For registers we use the prefix-free regular code code1 = {0|x|1x | x ∈ {0, 1}∗}.
Here are the codes of the first 14 registers:3

register code1 register code1
R1 010 R8 0001001
R2 011 R9 0001010
R3 00100 R10 0001011
R4 00101 R11 0001100
R5 00110 R12 0001101
R6 00111 R13 0001110
R7 0001000 R14 0001111

Table 2

For non-negative integers we use the prefix-free regular code code2 = {1|x|0x |
x ∈ {0, 1}∗}. Here are the codes of the first 16 non-negative integers:

integer code2 integer code2 integer code2 integer code2
0 100 4 11010 8 1110010 12 1110110
1 101 5 11011 9 1110011 13 1110111
2 11000 6 1110000 10 1110100 14 111100000
3 11001 7 1110001 11 1110101 15 111100001

3 The register names are chosen to optimise the length of the program, i.e. the most
frequent registers have the smallest code1 length.
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Table 3

The instructions are coded by self-delimiting binary strings as follows:

1. &R1,R2 is coded in two different ways depending on R2:4

01code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.
2. +R1,R2 is coded in two different ways depending on R2:

111code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is a non-negative integer.
3. =R1,R2,R3 is coded in four different ways depending on the data types of

R2 and R3:

00code1(R1)codei(R2)codej(R3),

where i = 1 if R2 is a register and i = 2 if R2 is a non-negative integer, j = 1
if R3 is a register and j = 2 if R3 is a non-negative integer.

4. !R1 is coded by
110code1(R1).

5. % is coded by
100.

4 The Complexity of Fermat’s Last Theorem

Fermat’s last theorem is one of the most famous theorems in the history of
mathematics. It states that there are no positive integers x, y, z satisfying the
equation xn + yn = zn, for any integer value n > 2. The result was conjectured
by Pierre de Fermat in 1637, and it was proven only in 1995 by A. Wiles [17] (see
also [1]). Many illustrious mathematicians failed to proved it, but their efforts
stimulated the development of algebraic number theory.

The register machine program presented below uses the integer B ≥ 5 to
enumerate all 4-tuples of integers (x, y, z, n) with z ≤ B, x, y < z, n ≤ B for
which the equality xn + yn = zn is tested.

The register machine program for Fermat’s last theorem is:

0. =a,a,14

1. &e,0 //===a^b

2. &d,1

3. +e,1

4. &f,0

5. &g,0

6. +f,1

4 As xε = εx = x, for every string x ∈ {0, 1}∗, in what follows we omit ε.
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7. +g,a

8. =f,d,10

9. =a,a,6

10. &d,g //g = a*d

11. =e,b,13

12. =a,a,3

13. =a,a,c //d = a^b

14. &B,4 //===main program

15. +B,1

16. &n,3

17. +n,1

18. =n,B,15

19. &z,3

20. +z,1

21. =z,B,17

22. &x,3

23. +x,1

24. =x,z,20

25. &y,3

26. +y,1

27. =y,z,23

28. &b,n

29. &a,x

30. &c,32

31. =a,a,1 //d = x^n

32. &E,d

33. &a,y

34. +c,4 //c = 36

35. =a,a,1 //d = y^n

36. +E,d //E = x^n + y^n

37. &a,z

38. +c,4 //c = 40

39. =a,a,1 //d = z^n

40. =E,a,42 //x^n + y^n = z^n

41. =a,a,26 //x^n + y^n =/= z^n

42. % //Fermat Theorem is false

The register machine program for Fermat’s last theorem has 43 instructions.
Its size is 597 bits5, hence the Fermat’s last theorem is in CU,1. According to
Theorem 1 we obtain:

Theorem 2 Assume ZFC is arithmetically sound. Then, one can effectively
construct in the formal language of ZFC the expression describing a two-dimensional
Hamiltonian system H such that ZFC proves that H has a Smale horseshoe iff
there exists a Π1-statement σ ∈ CU,1 such that ZFC proves σ.

5 We use: R1 = a, R2 = d, R3 = z, R4 = c, R5 = B, R6 = x, R7 = n, R8 = y, R9 =
e, R10 = f, R11 = g, R12 = E, R13 = b.
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5 Conclusions

Using the computational method in [4, 2, 3] we have shown that the problem
of proving the existence of a Smale horseshoe in a two-dimensional Hamiltonian
system is in the class CU,1, i.e. it has low complexity according to our complexity
measure. The specific pair of two-dimensional Hamiltonians used in the proof of
Theorem 1 plays no specific role: any pair of Hamiltonians, one for a dynamics
displaying chaotic behaviour and one for a smooth dynamics, will be equally
useful in Eq (??).

It will be interesting to investigate whether the results presented in this note
for Fermat’s last theorem can be generalised for any Π1-statement (in [7] it is
claimed that Theorem 1 is true for a couple of other Π1-statements).
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9. P. Gács, M. Hoyrup, C. Rojas. Randomness on computable probability spaces. A
dynamical point of view, Symposium on Theoretical Aspects of Computer Science
2009 (Freiburg), pp. 469–480.

10. J. Hartmanis. On effective speed-up and long proofs of trivial theorems in formal
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1 Introduction

Analog computation is a very powerful theoretical model of computation as it
allows for real numbers to be manipulated directly. But in practice, the lack of ef-
ficient error correcting codes makes it far less robust that its digital counterpart.
The situation is similar for quantum computing.

Computation with Continuous Variables (CV) is a quantum mechanical ana-
logue of analog computation. CV has in particular achieved significant suc-
cesses in quantum cryptography, including unconditionally secure key distribu-
tion [RC09] and teleportation. This is in parts achieved by offering two strengths:
(1) the existence of a very efficient measurement scheme, the homodyne detection
that measures the amplitude of an electromagnetic field, and (2) the Gaussian
formalism which allows ability to manipulate infinite dimensional Hilbert spaces.

Gaussian states and Gaussian operations are not universal for quantum com-
putation [BSBN02], but remain a main tool in CV information theory [CLP07].
One can wonder how much non-Gaussian operation one needs to perform uni-
versal quantum computation. Knill, Laflamme and Milburn [KLM01] show that
we can obtain universality by allowing the creation of an initial non-Gaussian
state and allow for non-Gaussian measurements.

In this paper we investigate a framework in which algorithms do the opposite:
creation and measurements are Gaussian. Between them, there is only a call to
a non-Gaussian oracle. We present here only the study of the Deutsch-Jozsa
algorithm, but our results extend naturally to other black box problems such as
Bernstein-Vazirani and Simon problems.

Problem DJ — Let f : {0, 1}n 7→ {0, 1} be a function promised to be either
constant, either balanced. Determine whether f is balanced or constant.

Classically, this problem needs an exponential number of queries to be solved
exactly and k queries are needed by a randomized algorithm to solve the problem
with an error exponentially small in k. In the discrete variable (DV) model, this
problem has been solved by Deutsch and Jozsa [DJ92] deterministically with one
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single call to the oracle whereas its classical counterpart needs an exponential
number of queries.

We choose this problem because we can find two contradicting results in the
Literature when using CV. The first result has been obtained by Pati and Braun-
stein [PB03] where they encode the input in only a single mode. Unfortunately
they use position states that do not exist. Adcock, Høyer and Sanders [AHS08]
developed this idea by giving a finite width to pulses so that they have only
physical states. Not surprisingly they have a probabilistic algorithm where one
should repeat O(m) times the algorithm in order to have an exponentially small
error in m, thus giving the quantum algorithm no more advantage on the clas-
sical probabilistic one. The error done by one execution of the algorithm cannot
be make as small as possible by reducing the width of the pulse. This effect is a
consequence of encoding all the input state into one single mode.

The algorithm presented here mimics the usual Deutsch-Jozsa algorithm by
encoding only one qubit into one physical system described by a continuous
variable. This algorithm solves the DJ problem with only one single query with
an error ε arbitrary small depending of the energy of the states E = O(

√
ln n

ε ).
In the Literature, one can find three main encodings. Gottesman, Kitaev and

Preskill [GKP01] have introduced a nice encoding whom main feature is to allow
efficient error correcting scheme in the KLM setting, but they are not realizable
in a lab. On a more practical side, the encoding studied in [RGM+03] where
the logical bits 0 and 1 are encoded in almost orthogonal coherent states |α〉
and | − α〉 have concentrated a lot of interest. The downside of this encoding is
that unitaries should be replaced by probabilistic operations. We choose to use
another encoding, in which the basis states are encoded into orthogonal optical
cat states.

2 Our algorithm

Let us define the Gaussian state |α, s〉 being the displaced squeezed vacuum with
squeezing parameter 1

s (where 0 < s ≤ 1) and displacement α ∈ C. Without loss
of generality, we consider only the case where α > 0. In particular, the states
|α, s = 1〉 are coherent states |α〉 that are the output of any (good laser).

The wave function of |α, s〉 is:

〈x|α, s〉 =
1

π1/4
√
s

exp

{
− 1

s2

(
x√
2
− α

)2
}
. (1)

We noteH2 = span{|α, s〉, |−α, s〉} the Hilbert space associated to one qubit.

Since 〈α, s|−α, s〉 = e−2(
α
s )

2

, {|α, s〉, |−α, s〉} is not an orthonormal basis of H2

but we can define the cat states

|0〉 ≡ |α, s〉+ | − α, s〉√
2(1 + e−2(

α
s )

2
)

and |1〉 ≡ |α, s〉 − | − α, s〉√
2(1− e−2(αs )2)

, (2)
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so that {|0〉, |1〉} is an orthonormal basis of H2.

Writing | ± α, s〉 in the computational basis reads | ± α, s〉 =
√
p|0〉 ± √q|1〉

with p = 1+e−2(α
s

)2

2 and q = 1−e−2(α
s

)2

2 . (bold letters are used for logical qubits,
ie. |x〉 is string of qubits of the integer x and |x〉 is the x position state.)

The states |α, s〉 and | − α, s〉 are not orthogonal but the POVM {π+, π−}
with

π+ =

∫ +∞

x=0

|x〉〈x|dx and π− =

∫ 0

x=−∞
|x〉〈x|dx (3)

can distinguish them with an exponentially small error in α
s :

Pr(error) = Tr[π+| − α, s〉〈−α, s|] =

∫ +∞

x=0

|〈−α, s|x〉|2dx (4)

=
1

2

(
1− erf

(√
2
α

s

))
≈ 1

2
e−2(

α
s )

2

(5)

where erf denotes the error function.

We want to note that the Hilbert space H2 (when there is no squeezing) is
the same Hilbert space engendered by the states of the [RGM+03] encoding.

The oracle Uf computing the function f is defined by:

∀x ∈ {0, 1}n, y ∈ {0, 1}, Uf |x〉|y〉 = |x〉|f(x)⊕ y〉. (6)

We remark that the states |0〉±|1〉√
2

can be approximated by |±α, s〉. As Eq. (5)

suggests, a homodyne measurement in the x-basis followed by a post-selection
on the sign of the outcome is an efficient way to distinguish between them. That
is why we consider the following algorithm:

1. Create the input state |ψin〉 = |α, s〉⊗n| − α, s〉.
2. Apply Uf to |ψin〉. Denote the result |ψout〉.
3. Measure each of the first n modes with an homodyne detection.

4. If all the results are positive output constant else output balanced.

The input state is |α, s〉⊗n| − α, s〉 which can be rewritten:

|α, s〉⊗n| − α, s〉 =
√
p
n


 ∑

x∈{0,1}n
σ|x||x〉


⊗

(√
ε
|0〉+ |1〉√

2
+
√

1− ε |0〉 − |1〉√
2

)

with σ =
√

q
p and ε = 1−

√
1−e−4(α

s
)2

2 and for all binary string s, |s| denotes the

Hamming weight of s.
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After the oracle application, the state is:

|ψout〉 = Uf |ψi〉 =
√
ε
√
p
n

∑

x∈{0,1}n
σ|x||x〉

︸ ︷︷ ︸
|ψc〉

|0〉+ |1〉√
2

+
√

1− ε√pn
∑

x∈{0,1}n
σ|x|(−1)f(x)|x〉

︸ ︷︷ ︸
|ψf 〉

|0〉 − |1〉√
2

The measurement consists on a homodyne measurement on each on the n
first modes described by the state Trt|ψout〉〈ψout| = ε|ψc〉〈ψc| + (1 − ε)|ψf 〉〈ψf |
where Trt denotes the partial trace on the last mode.

The measurement is described b the POVM {Π+, Π−} with

Π+ =

n⊗

i=0

∫ +∞

xi=0

|xi〉〈xi|dxi and Π− = 1−Π+ = Π− (7)

Let |φ〉 be a nmode state written in the computational basis |φ〉 =
∑

k∈{0,1}n ck|k〉.
We note H(φ) = Tr[Π+|φ〉〈φ|] the probability that the result of each homodyne
measurement are positive:

H(φ) =

∫ +∞

x=x1···xn=0

|〈x|φ〉|2 dx =
∑

k,l∈{0,1}n
ckc
∗
l

n∏

i=1

∫ +∞

xi=0

〈xi|ki〉〈li|xi〉dx (8)

and we have:
∫ +∞

xi=0

〈xi|ki〉〈li|xi〉dxi =

{
1
2 if ki = li

cos θ
2 otherwise

with cos θ =
erf
(√

2αs
)

√
1− e−4(αs )2

(9)

so we get:

H(φ) =
1

2n

∑

k,l∈{0,1}n
ckc
∗
l cos|k⊕l| θ. (10)

where ⊕ is the bitwise xor, |k ⊕ l| is the Hamming distance between the binary
strings k and l.

After a (long) derivation, we can show that by defining the function g :
{0, 1}n → [−1, 1] by g(x) = σ|x|(−1)f(x), the Fourier coefficient ĝ(β) appears
naturally:

H(ψf ) =
(p

2

)n
(1 + cos θ)

n
∑

β∈{0,1}n

(
1− cos θ

1 + cos θ

)|β|
ĝ(β)2. (11)

The probability that the result of the homodyne measurement on the first n
modes is positive is given by:

Tr[Π+Trt|φout〉〈φout|] = εH(ψc) + (1− ε)H(ψf ) (12)
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Using Fourier analysis on the Boolean cube we can show that the probability
of success of the algorith is lower-bounded by

(
1
2 +
√
pq cos θ

)n
. This in fact

corresponds to f being a constant function.

In both cases, the error is O(e−(αs )
2

). This is in a deep contrast with the
result obtained in [AHS08] where the error cannot be as small as desired by
increasing a parameter.

3 Conclusion

We have shown how to solve the Deutsch-Jozsa problem when the information
is encoded in CV states. Our algorithm is really simple — theoretically and
experimentally: creation of Gaussian states, oracle application and single mode
measurements, all the non-Gaussian part being done by the oracle.

Contrary to the usual Deutsch-Jozsa algorithm where the result is determin-
istic, we only have a probabilistic result but by choosing a high enough energy
(ie. value of α) we can make this error exponentially small with only single call
to the oracle. This is a consequence of the tensor product structure of the input
state.

In this framework, the Bernstein-Vazirani and the Simon algorithms can be
studied with the same tools and have comparable results.

We can also show that the energy of the input states should be O(
√

ln n
ε ) in

order to have an error upper-bounded by ε thus giving to the energy the role an
important parameter of the problem.

Finally, all this work has been done in Hilbert spaces parameterized by α,
but the measurements and the bit flip operation (which is a rotation of angle
π in the phase space) do not depend on α. The stability of the problem to the
value of α should be studied. In particular, if we use an oracle with a higher
value of α than the one it has been design, what happens to the performance of
the algorithm? On the one hand the oracle will introduce some noise, but on the
other hand the creation and the measurements of the states should give more
accurate results.

The bound on the probability of success of our algorithm is tight. Although
we are not able to identify the worst-case for balanced function, we conjecture
that there is a threshold on the values of α: for low values the function is a
dictator, and for high values, f is majority. Resolving this problem would gen-
eralize “majority is the stablest” [MOO05] when you remove the condition of
low-influence of variables.
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A Proof of Eq. (11)

Let |ψ〉 =
∑

k∈{0,1}n ck|k〉 and note H(ψ) = Tr[Π+|ψ〉〈ψ|] the probability that
the result of each homodyne measurement being positive:

H(ψ) =

∫ +∞

x=x1···xn=0

|〈x|ψ〉|2 dx (13)

=

∫ +∞

x=x1···xn=0

∣∣∣∣∣∣
∑

k∈{0,1}n
ck〈x|k〉

∣∣∣∣∣∣

2

dx (14)

=

∫ +∞

x=x1···xn=0

∑

k,l∈{0,1}n
ckc
∗
l 〈x|k〉〈l|x〉dx (15)

=
∑

k,l∈{0,1}n
ckc
∗
l

n−1∏

i=0

∫ +∞

xi=0

〈xi|ki〉〈li|xi〉dx (16)

and we have:
∫ +∞

xi=0

〈xi|ki〉〈li|xi〉dxi =

{
1
2 if ki = li

cos θ
2 otherwise

with cos θ =
erf
(√

2αs
)

√
1− e−4(αs )2

(17)

160



Proof:
For all β, we first prove that |χβ〉 is an eigenvector of M . {|χβ〉}β being a basis
of C2n , we found all the eigenvectors of M .

M |χβ〉 =
1√
2
n

∑

i,j,k∈{0,1}n
cos|i⊕j| θ(−1)k·β |i〉〈j|k〉 (18)

=
1√
2
n

∑

i∈{0,1}n


 ∑

j∈{0,1}n
cos|i⊕j| θ(−1)j·β


 |i〉 (19)

=
1√
2
n

∑

i∈{0,1}n


 ∑

m∈{0,1}n
cos|m| θ(−1)(m⊕i)·β


 |i〉 (20)

=
∑

m∈{0,1}n
cos|m| θ(−1)m·β |χβ〉 (21)

We remark that |χβ〉 is an eigenvector of M and its eigenvalue is a function of
|β|.

∑

m∈{0,1}n
cos|m| θ(−1)m·β =


 ∑

m∈{0,1}n−|β|
cos|m| θ





|β|∑

i=0

(|β|
i

)
(− cos θ)i




(22)

= (1 + cos θ)n−|β|(1− cos θ)|β| (23)

So we get:

H(ψ) =
1

2n

∑

k,l∈{0,1}n
ckc
∗
l cos|k⊕l| θ. (24)

⊕ being the bitwise xor, |k ⊕ l| is the Hamming distance between the binary
strings k and l.

Let us now give the meaning of H(ψf ):

H(ψf ) =
(p

2

)n ∑

k,l∈{0,1}n
σ|k|+|l|(−1)f(k)+f(l) cos|k⊕l| θ (25)

=
(p

2

)n
〈v|M |v〉 (26)

with |v〉 =
∑
x∈{0,1}n σ

|x|(−1)f(x)|x〉 and M =
∑
k,l∈{0,1}n cos|k⊕l| θ|k〉〈l|. The

matrix M can be diagonalized (proof in appendix ?? ):

M = (1 + cos θ)n
∑

β∈{0,1}n
ρ|β||χβ〉〈χβ | (27)
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where {χβ}β is the Fourier basis: |χβ〉 = H⊗n|β〉 = 1√
2
n

∑
x∈{0,1}n(−1)x·β |x〉

and ρ = 1−cos θ
1+cos θ . That gives:

H(ψf ) =
(p

2

)n
(1 + cos θ)

n
∑

β∈{0,1}n
ρ|β||〈v|χβ〉|2. (28)

Defining the function g : {0, 1}n → [−1, 1] by g(x) = σ|x|(−1)f(x), the quantity
〈v|χβ〉 has an easy interpretation as the Fourier coefficient ĝ(β).

H(ψf ) =
(p

2

)n
(1 + cos θ)

n
∑

β∈{0,1}n
ρ|β|ĝ(β)2. (29)
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Abstract. This paper explains progress towards the construction of a
P System utilising these components, as well as the experimental set-up
used to achieve these results. A photochromic spiropyran dye - NitroBIPS
- has been used in conjunction with optical stimulation to produce NOR
and NAND gates as well as numerical registers.

1 Introduction

Computing is all around us, from the largest supercomputers to predict weather
patterns[1], to the smallest smart phones that keep us communicating. Uncon-
ventional methods of computing have been explored for sometime, including
Chemical methods to produce solve combinatorial problems[2] or create logic
gates[3], optical methods[4] or an approach in the middle that uses light to
stimulate a substance[5]. This project aims to make inroads into a physical im-
plementation of a Membrane Computer or ’P System’ (Named for their creator,
Gheorghe Păun[6]) using a similar combined approach of light stimulation and
photo-switching molecules. P Systems are a model of computation initially in-
spired by the simulation of cellular modelling where multisets of symbols are
evolved in parallel within membrane-enclosed compartments by a set of rules.
Symbols can move between membranes, mimicking the flow of chemicals in bi-
ological cells and membranes can be created and destroyed. P Systems are well
researched, with many variations and formulations[7–9], and have been shown
to be flexible and universal in certain forms[10], and super-Turing in others; able
to solve NP-Complete problems in linear time via membrane division[11, 12].

P-Systems consist of nested membranes and the associated regions contained
within these membranes. Each region contains some objects in a multiset, and
some rules on how these objects interact and change over time. This can be
compared to cells as the membrane-separated compartments of cells containing
various molecules, and these molecules being subject to chemical reactions that
change and transport them. A more formal definition of a basic P System is
thus:
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A P-System P of degree m (where the degree is the number of discrete
membranes) is a tuple:
P = {V, µ, w1, w2, . . . , wm, R1, R2, . . . , Rm, i0} where:
V is a finite and non-empty alphabet of objects representing the possible
contents of cells.
µ is the nested structure of membranes, typically represented as either
a tree or as brackets, with each membrane being labelled with a unique
number. E.g.

[1[2[3]3]2]1

wx are multi-sets of objects that begin in each membrane’s region
Rx are the sets of rules in each membrane. E.g.

R2 : {aa→ b, b→ c, a→ cd}

i0 is the membrane label of the output region.

At the end of execution, the content of the output region is the result of the
computation. Rules in a P-System are typically executed non-deterministically,
in a maximally parallel fashion, or via a priority hierarchy. The latter requires
that the rules are given an order of preference, and in a series of discrete steps,
the rules are checked in order until one is found for which the necessary inputs
are present, and is executed. The process then starts over. Non-deterministic ex-
ecution randomly selects rules, checks if they are applicable, and chooses another
if not. Maximally parallel execution will execute many rules simultaneously, to
use up as much of the available objects as possible each time step. To our knowl-
edge, no physical implementation of a P System has been completed, so we aim
to produce the simplest possible physical P System implementation.

There exist many substances which react to light, from photosensitive Belousov-
Zhabotinsky media[5] to neurons[13]. We sought a substance that would require
minimal preparation work, ruling out neurons, and which could save a state for
a reasonable time period. Though BZ-Reactions have been shown to be capa-
ble of data storage in the form of images[14], and indeed logical functions[5],
we looked for a means to save integer numbers of objects as opposed to ana-
logue images to better implement a P System. We are utilising a photochromic
spiropyran dye[15, 16] - NitroBIPS or NBIPS - available from Sigma-Aldrich3.
NitroBIPS possesses two stable states; Spiropyran (SP) and Merocyanine (MC),
and can be switched between the two via the application of two wavelengths of
light; Ultraviolet to switch from SP to MC (sometimes called ’colouration’ or
’photocolouration’), and Green to switch from MC to SP (’de-colouration’). Ad-
ditionally, a proportion of green light directed at MC state molecules will cause
the molecule to enter a third ’MC*’ state, followed by a return to the MC state
and the emission of an orange photon in the 630nm range, or to enter a bleached
state from which the NBIPS molecule is unresponsive. This feature allows us to

3 More fully 1’,3’-Dihydro-1’,3’,3’-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2’-
(2H)indole][17], Sigma-Aldrich product code 273619.
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determine the proportion of SP and MC state molecules in a given sample of
NBIPS, as only MC state molecules will emit orange light. Though not all MC
state molecules will emit a photon, the quantum yield is fixed dependant on the
solvent, allowing us to calculate the true amount.

(a) (b)

Fig. 1. In figure (a) we see the two states of NitroBIPS. On the top is the more
stable Spiropyran form. Below is the Merocyanine form. Figure (b) is the mechanism
of NBIPS expressed as a P System on a per-molecule basis, starting in this case with
a single molecule in state SP and in which only photons absorbed by NBIPS molecule
are considered. SP,MC,MC∗ and Bleach are objects representing NBIPS in different
states, GIn and UV In are green and ultraviolet photons respectively which enter the
system from the environment, OOut is an orange photon leaving the system. The rules
have probabilities attached to them; not every absorbed photon will cause a change.
QYColouration is the proportion of absorbed UV photons that cause SP molecules to
change to MC, QYDe−Colouration is the opposite, QYEmission is the odds of a MC state
molecule entering the MC* state in response to a green photon, and POrange is the
proportion of MC* state molecules that emit orange photons instead of bleaching. The
two rules below the line are of a lower priority to those above the line, and represent
the fact that photons do not remain in the system if they are not used.

2 A NitroBIPS P System Implementation

2.1 Rule Application via Logic Gates

Any computer in general requires both processing elements and data storage
elements. This section describes the first of these elements, a processor of some
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sort. Specifically in this case, a set of logic gates. As shown, P System rules
operate on a symbol consumption/production paradigm governed by rules. As
our system operates with numerical registers (next section) we can operate on
symbols via addition/subtraction mathematics.

There exists a wide variety of logic gates, but of the most commonly known
class - two input/one output - only two are functionally complete in isolation;
NAND and NOR - sometimes called being a sole sufficient operator - and hence
are the minimum building blocks to produce a general-purpose computing device.
Some sets of logic gates can also be logically complete; the most common being a
two-element set of NOT and either AND or OR. A series of functionally complete
logic gates is able to simulate any other logic gate of the same class. Both NAND
and NOR gates (as well as others) are possible to implement with NitroBIPS
and pulses of light. Different patterns of light create different results. Operation
begins with the NitroBIPS in a fully SP state. For both NAND and NOR gates,
some UV light is then used to prepare the gate, two pulses of green light are
then used subject to the value of the inputs, and then a third pulse of green
light is used to check the output and reset the gate. To describe these pulses,
the following notation is used:

The pulses alter the number of molecules in SP and MC state. Pulses are
measured in ’units’ where one unit of light is the minimum number of photons
required to cause a change in the state of the well that can be discerned by our
system, a figure reliant primarily on system noise. Pulses are shown as nL(±x),
where n is the number of units of L light, and x is the change in the number
of MC state molecules, which may be zero if there are no appropriate state
molecules to convert, shown as -. As the number of MC and SP molecules are
linked, +1 MC state molecules also corresponds to -1 SP state molecule, but this
is omitted in the tables for clarity. This system is expressed more intuitively as
a P System in figure 2 (b).

AND Gate
UV UV Green Green Orange

Input 1 Input 2 Input 1 Input 2 Moderator Check/Reset Output
0 0 - - 1G(-) 1G(-) -
1 0 1UV(+1) - 1G(-1) 1G(-) -
0 1 - 1UV(+1) 1G(-1) 1G(-) -
1 1 1UV(+1) 1UV(+1) 1G(-1) 1G(-1) 1

NAND Gate
UV Green Green Green Orange

Input 1 Input 2 Pulse Input 1 Input 2 Check/Reset Output
0 0 2UV(+2) - - 2G(-2) 2
1 0 2UV(+2) 1G(-1) - 2G(-1) 1
0 1 2UV(+2) - 1G(-1) 2G(-1) 1
1 1 2UV(+2) 1G(-1) 1G(-1) 2G(-) -
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NOR Gate
UV Green Green Green Orange

Input 1 Input 2 Pulse Input 1 Input 2 Check/Reset Output
0 0 1UV(+1) - - 1G(-1) 1
1 0 1UV(+1) 1G(-1) - 1G(-) -
0 1 1UV(+1) - 1G(-1) 1G(-) -
1 1 1UV(+1) 1G(-1) 1G(-) 1G(-) -

AND is included here as an example of how other gates can be constructed, and
how it operates on a different principal to the NAND and NOR gates. Similarly,
OR and NOT can be produced; OR by omitting the moderator pulse in the
AND pattern, and NOT by changing the NOR gate to have a single input. It
should be noted that the gates do emit orange photons during the input section.
For the output collected to be correct, only emission during the check/reset
pulse should be counted. This may prove a problem depending on the set-up,
the NAND gate would work as a NOR gate if only two units of orange light
counts as a positive output, but with this method the orange emitted during the
input phase when having both inputs as true might be incorrectly regarded as a
positive output. It should also be noted that the NAND and OR gates actually
have three different outputs; False, True and Double True. However, the NOR
gate strains the NitroBIPS less per cycle and takes less time to run, so this is
the gate we have moved forwards with.

(a) (b)

Fig. 2. (a) Four traces corresponding to the four combinations of inputs into the gate.
(b) A modified version of figure 1 (b) representing the operations possible on a sample
of NBIPS, where symbols represent large numbers of photons or molecules rather than
individuals, and where the sample has 101 potential states (0 - 100 MC-state molecule
units). The Gate Description tables utilise these rules.
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2.2 Symbol and Rule Storage as Registers

As mentioned, data storage in a P System takes the form of symbols, and each
membrane contains a multiset of symbols. If we assign one register per type
of object, the register need only contain the quantity of that object. NBIPS
registers operate as a proportion of SP to MC molecules. If a register has X
molecules, and it takes a change in Y molecules to be able to distinguish state n
from n+ 1, then a register can have (X/Y ) + 1 states. Change between states is
via the application of UV light to increase the proportion of MC molecules (and
decrease SP molecules), and green to increase the number of SP molecules (and
decrease MC). Checking the state requires a short burst of green light, causing
the emission of some orange light and also the de-colouration of some molecules.
By keeping the pulse short, the number of molecules converted can be kept to a
minimum. If necessary, a rectifying UV pulse can be used to undo the damage
done by the check pulse.

The number of photons emitted will be proportional to the state of the
register. If you know how many photons are emitted when the register is in a
maximally-coloured state by an equal length and intensity green pulse, then the
response of each register state is proportional.

Sn = (SMax/PMax)× Pn
Where S is a state, and P is the number of photons emitted per pulse in that
state. Current progress allows for 53 states in a register, a figure which will
increase as we work to decrease system noise.

2.3 Logical Style

In contrast to the operation of electrical logic gates, whose inputs operate in
a parallel fashion, the opto-chemical gates of this system operate in a serial
manner, accepting inputs one after another. This results in several important
differences to classical logic gates.

Firstly, the gate requires a preparation stage to ready the gate in the form
of a pulse of UV light to convert some SP molecules to the MC state, as well as
a check/reset pulse to extract the output and ready the gate for another run. In
between these two bookend pulses lies the input pulses; typically two but could
be any number; especially with NOR gates which scale to any number of inputs
under this paradigm. Though our current gates are not even within the same
order of magnitudes of speed as modern electronic logic gates, it stands to reason
that the gate delay on opto-chemical gates will be much larger due to the extra
work required to prepare and reset the gate.

However, the serial nature of the gate does add some interesting capabilities
similar to that of sequential logic. The two (or more) inputs need not arrive at the
same time, for example, nor in any particular order. Provided the inputs arrive
within the ’clock cycle’ of the preparation and check/reset pulse, the result will
remain accurate. The output of the gate need not be read immediately either,
but will remain stored in the gate until the check/reset pulse akin to a flip-flop.
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A second difference is that the gates of the opto-chemical system have no
physical form per-se, being as they are a region of NitroBIPS exposed to light.
This means the pattern of light pulses can be altered, and the type of gate
changed. NOR gates are an obvious choice under this system as they work well,
provide true/false outputs and are functionally complete. Despite this, other
gates can be made by altering the pattern of lights. Similarly, an interesting
facet of the opto-chemical system is that both memory and logic gates are in-
terchangeable. As previously described, NitroBIPS can function as both storage
and as logic gates, but the difference is only the patterns of light shined upon a
section of the material. Though conventional logic gates can function as storage
when wired as flip-flops or latches, these can only store one bit per device, and
need to be wired specially.

The third issue, and a clear negative is that the output of a gate is unsuit-
able to be used as a direct input to another, preventing the cascading of gates.
Cascading is the feature of electronic logic gates where the input and output
are of the same format, allowing outputs to be wired directly to the inputs of
other logic gates to process functions without the need for an ancillary system to
mediate between each gate. With the NBIPS logic gates, not only is the output
light of the wrong wavelength, but far far too dim to be useful. Instead, the con-
trolling computer is required to mediate and convert the output light back into
an appropriate pulse. The computer is also necessary to regulate and time the
preparation and check/reset pulses. Hence in its present form, the opto-chemical
computer cannot be a stand-alone system, and will remain reliant on its parent
conventional computer.

3 Experimental Section

3.1 NitroBIPS Characterisation

To use the NitroBIPS, we must first understand how it reacts. An optical setup
and accompanying software control were created to expose samples of Nitro-
BIPS to wavelengths of light and measure the photon output. NitroBIPS is
stored in powdered form, and although it will react to light in its dry state,
its opaque nature makes use difficult (light will only hit the exterior molecules)
and the quantum yield is low. Instead, NitroBIPS should be dissolved into a
solvent to allow control over concentration, and to allow optical access to all
molecules. Testing of solvents showed that pure Ethanol is successful, cheap and
safe. However, it also evaporates quickly, requiring a well-sealed well, and has a
poor quantum yield. NitroBIPS would not dissolve in some other solvents with
slower evaporation times, such as Glycerol. Dissolution in Methylcyclohexane
or Toluene increases the quantum yield of colouration[18], but have not been
explored yet.

Fluid NitroBIPS is useful, but for our purposes it was necessary to address
different parts of NitroBIPS. With a liquid, this would require tiny wells of
NitroBIPS to defeat diffusion, a difficult and complex enterprise. Instead, Nitro-
BIPS was first mixed in a high concentration (2mM) with Methanol, and then
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mixed into uncured Polydimethylsiloxane (PDMS) silicone rubber at a ratio of
5% NitroBIPS to 95% PDMS. Thorough mixing ensures that tiny bubbles of Ni-
troBIPS are distributed evenly throughout the rubber, which subsequently cures
into a transparent sheet4; we aim for a thickness of 0.5mm. Mixing with PDMS
does not entirely eliminate the evaporation of the methanol from the mixture,
but is simpler than fluid wells and will last 3-5 days out in the open depending
on how heavily it is used (the heating effect of the light from the LEDs promotes
evaporation).

The optical set-up features a 365nm UV LED and a 530nm Green LED to
switch NitroBIPS between the two stable states. Light from these LEDs is com-
bined with a dichroic mirror and the sample exposed with uniform Köhler illumi-
nation. Both LEDs are computer controlled in both on/off state and brightness,
and can be manually adjusted to change the size of the projected disc. Emis-
sions from the sample are separated from any reflected input light via a second
dichroic mirror and are captured by a high sensitivity photodioide and the read-
ings recorded on a computer. The system is controlled by a LabVIEW program

Fig. 3. The physical system. Two LED arms combine light via a dichroic to expose the
sample. Orange light is filtered by a second dichroic and recorded by a photodiode or
camera.

running on a computer coupled with a National Instruments Data Acquisition
card, which allows precise control of all system inputs and recording of all system

4 With thanks to Gerard Marriott for his suggestion
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outputs. The low amount of orange light emitted by NitroBIPS coupled with a
low collection rate to the diode necessitates heavy signal amplification and noise
reduction/filtration. A hardware filter is used to remove most environmental
noise, the system is grounded to an electrical earth, and experiments take place
in a photography darkroom (without the photography red safety light).

A few issues have been identified with NitroBIPS. NitroBIPS changes states
slowly in Methanol. It requires a large quantity of light for the system to function
at any useful speed, though there exist methods to improve this. One method is
placing a mirror on top of the sample. The mirror will reflect light which has not
been absorbed back through the NitroBIPS, giving it a second chance to interact
with NBIPS molecules. The mirror also directs more emitted orange light into
the collection lens; orange photons from NBIPS fire in all directions with an
equal probability, and only a small proportion of these are collected. The mirror
directs photons which were fired upwards back down towards the lens under the
NBIPS sample.

A second more complex method would be a change of solvent. Methanol is
not the ideal solvent for NitroBIPS; others grant a higher quantum yield but
the Methanol is required to mix with the PDMS. Other solvents either inhibit
the curing of the PDMS, or evaporate before the PDMS is cured. PDMS also
partially attenuates UV light, reducing the number of UV photons interacting
with the NitroBIPS molecules. Using thin sheets of PDMS helps in this respect,
as these is less material for photons to pass through. It is also necessary to
strike a balance between high and low concentrations of NBIPS. Too high and
the optical density of the material increases and photons are less likely to reach
NitroBIPS molecules at the back of the sample. Too low and photons will pass
through the sample without ever interacting with a NitroBIPS molecule.

NitroBIPS also bleaches over time. Bleaching occurs when green photons
interact with MC-state molecules with a probability of approximately 0.17% per
interaction, and leaves the molecule in a third unresponsive state which will not
further react to light. NitroBIPS will also thermally decay at a rate dependant
on ambient temperature, but at room temperature (20◦C) has a decay constant
of 0.000068, and a corresponding half-life of 10,193 seconds (2 hours 43 minutes).
Thermal transitions take place in both colouration and de-colouration directions,
but trending towards de-coloured as the de-colouration transition requires less
energy. In general, this is slow enough to not be a concern unless data is being
stored long term, in which case measures to decrease the temperature should be
taken or by storing values on the computer if absolutely necessary. With our set-
up, it is also not possible to place the system in a fully MC-state; the UV LED
emits some light in the range of wavelengths that cause a MC to SP switch,
causing some orange emission during UV pulses, and causing a proportion of
NBIPS molecules to be in the SP state.

3.2 Results

Our present system operates with a single gate, exposing it to a UV preparation
pulse, then green input pulses, a final green check/reset pulse and a single second
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gap between logic gates to save the output of a gate and check the inputs to
the next gate. The four traces of orange emission are shown in figure 3 (b),
along with their corresponding truth table entries. Like all logic gates, NBIPS
Logic Gates can be chained together to produce more complex devices, though
in our current case, this actually means using a single gate repeatedly with the
computer storing the outputs of gates and converting them to the inputs of
subsequent gates. For example, we have used eighteen NOR gates to produce a
2-bit adder, as shown in figure 4.

(a) (b)

Fig. 4. (a) A two-bit NOR adder. The least significant bit (LSB) is added in the upper
section, and the most significant bit (MSB) in the lower. The LSB is worth 1, the MSB
worth 2, and the CarryOut - while technically an overflow - would be worth 4 if there
was another full-adder for it to feed to. The numbers represent the order in which gates
are executed. (b) Complete trace of the 2-bit NOR adder. Each interval represents one
logic gate. The calculation taking place here is 3 + 1, and we can see that LSB Output
gate 8 (time 497-568) and MSB Output gate 17 (1136-1207) have output 0, where as
the CarryOut gate 18 (1207-1278) has output 1. Hence by referring to (a), 3 + 1 = 4 if
we consider the CarryOut as a valid output. Total execution time was 21 minutes and
18 seconds.

4 Future Work

Two points limit the complexity of possible devices. Firstly, NBIPS bleaches,
reducing the number of active molecules over time, causing the gates to produce
smaller amounts of orange emission as they are used. This must be accounted
for by lengthening the pulses of light as the system continues. Secondly, the
present system takes a long time to run even before any pulses are lengthened
to account for bleaching, adding a practical limit to how complex devices can
be. Presently, the length of pulses is determined at the start of computation and
kept constant. To increase the time available to process, the system needs to
be updated to self-calibrate periodically to account for bleaching, altering pulse
length to minimise gate execution time, but at the same time allowing for the
decrease in orange response.
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Creating a means to apply symbol rewriting rules using the minimal number
of NOR gates is also current aim of the project. The logic system created would
need to be able to interpret stored rules and instruct the computer in how to
apply them. Additionally, we aim to use the flexible nature of NBIPS gates and
registers to simulate membranes in the system, where the rules and registers of
a membrane can be moved, erased or created by light, and arranged spatially
on a device. The membranes are thus virtual constructs as opposed to having
a physical form. Using NitroBIPS in liquid form utilising a microfluidics device
may also be explored as an alternative to PDMS discs, as it more closely mimics
the movement of symbols in a P System. The ability to delay the input and
output of NBIPS gates could potentially be used to store partially computed
functions, an idea we hope to explore. System noise limits the speed at which
the system can run, and we plan on building a faraday cage to protect our sys-
tem from electromagnetic interference, and have the laboratory’s power supply
smoothed or switch the system to battery power; both of which would dramati-
cally reduce system noise. Finally, our current system can only expose the entire
NBIPS sample. By utilising a spatial light modulator (SLM), we could direct
light to specific parts of the sample, and address multiple locations in parallel.

5 Conclusion

We have made inroads into implementing a P system utilising a photo-switching
molecule; NitroBIPS. Registers and many logical operators have been imple-
mented and shown to work, including both 2-input/1-output sole sufficient op-
erators. Current execution speeds are slow due to high system noise from elec-
tromagnetic fields and imperfections in the power supply, leading to the require-
ment of long light pulses to convert larger quantities of NitroBIPS. The amount
of light required is dependent on system noise; very low system noise allows you
to get away with smaller pulses of light, and hence quicker system operation.
The system also remains heavily reliant on the controlling computer, with no
obvious means by which to remove it. The system also cannot cascade, as un-
like electronic logic gates whose input and outputs are of the same format, the
NBIPS gates take two wavelengths of light as preparation and input and emit a
third with a dramatically lower intensity without direction, requiring an inter-
mediary converter. The need for a preparation pulse is not the problem here, as
gates can be pre-prepared for inputs. The method however, would scale down
to very small quantities of NBIPS; not quite one molecule as the emission of
orange light is not definite and the detection of the single photon very hard, but
small non-the-less. This method also has some interesting features such as the
non-fixed nature of the registers and logic gates; they can be placed anywhere
on a sample of NBIPS, and altered/erased at will. This could allow for a method
of computation that can sacrifice storage space for increased parallel processing
power, or reduce its processing power for more storage space. NBIPS logic gates
can also accept inputs at different times, and retain state until the second in-
put arrives, and save the output state until a check pulse is given, potentially
allowing for partially executed functions to be stored.
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Abstract. The aim of this paper is to undertake an experimental inves-
tigation of the trade-offs between program-size and time computational
complexity. The investigation proceeds by an exhaustive exploration and
systematic study of the functions computed by the set of all 2-color Tur-
ing machines with 2, and 3 states with particular attention to the run-
times, space-usages and patterns corresponding to the computed func-
tions when the machines have access to larger resources (more states).

We report that the average runtime of Turing machines computing a
function almost surely increases as a function of the number of states, in-
dicating that machines not terminating (almost) immediately tend to oc-
cupy all the resources at hand. We calculated all time complexity classes
to which the algorithms computing the functions found in both (2,2) and
(3,2) belong to, and made comparison among these classes.

Our study revealed various structures in the micro-cosmos of small Tur-
ing Machines. Most notably we observed “phase-transitions” in the halting-
probability distribution.

Keywords: small Turing machines, Program-size complexity, Kolmogorov-
Chaitin complexity, space/time complexity, computational complexity,
algorithmic complexity.

1 Introduction

Among the several measures of computational complexity there are measures
focusing on the minimal description of a program and others quantifying the re-
sources (space, time, energy) used by a computation. This paper is a reflection of
an ongoing project with the ultimate goal of contributing to the understanding of
relationships between various measures of complexity by means of computational
experiments.
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1.1 Two measures of complexity

The long run aim of the project focuses on the relationship between complexity
measures, particularly descriptional and computational complexity measures. In
this subsection we shall briefly and informally introduce them.

In the literature there are results known to theoretically link some complex-
ity notions. For example, in [6], runtime probabilities were estimated based on
Chaitin’s heuristic principle as formulated in [5]. Chaitin’s principle is of descrip-
tive theoretic nature and states that the theorems of a finitely-specified theory
cannot be significantly more complex than the theory itself.

Bennett’s concept of logical depth also combines the concept of time complex-
ity and program-size complexity [1, 2] by means of the time that a decompression
algorithm takes to decompress an object from its shortest description.

Recent work by Neary and Woods [14] has shown that the simulation of cyclic
tag systems by cellular automata is effected with a polynomial slow-down, setting
a very low threshold of possible non-polynomial tradeoffs between program-size
and computational time complexity.

Computational Complexity Computational complexity [4, 9] analyzes the
difficulty of computational problems in terms of computational resources. The
computational time complexity of a problem is the number of steps that it takes
to solve an instance of the problem using the most efficient algorithm, as a
function of the size of the representation of this instance.

As widely known, the main open problem with regard to this measure of
complexity is the question of whether problems that can be solved in non-
deterministic polynomial time can be solved in deterministic polynomial time,
aka the P versus NP problem. Since P is a subset of NP the question is whether
NP is contained in P. If it is, the problem may be translated as, for every Turing
machine computing an NP function there is (possibly) another Turing machine
that does so in P time. In principle one may think that if in a space of all Turing
machines with a certain fixed size there is no such a P time solving machine
for the given problem (and because a space of smaller Turing machines is al-
ways contained in the larger) only by adding more resources a more efficient
algorithm, perhaps in P, might be found.

Descriptional Complexity The algorithmic or program-size complexity [8, 5]
of a binary string is informally defined as the shortest program that can produce
the string. There is no algorithmic way of finding the shortest algorithm that
outputs a given string

The complexity of a bit string s is the length of the string’s shortest program
in binary on a fixed universal Turing machine. A string is said to be complex or
random if its shortest description cannot be much more shorter than the length of
the string itself. And it is said to be simple if it can be highly compressed. There
are several related variants of algorithmic complexity or algorithmic information.

In terms of Turing machines, if M is a Turing machine which on input i
outputs string s, then the concatenated string 〈M, i〉 is a description of s. The
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size of a Turing machine in terms of the number of states (s) and colors (k)
(aka known as symbols) is determined by the product s · k. Since we are fixing
the number of colors to k = 2 in our study, we increase the number of states
s as a mean for increasing the program-size (descriptional) complexity of the
Turing machines in order to study any possible tradeoffs with any of the other
complexity measures in question, particularly computational (time) complexity.

1.2 Turing machines

Throughout this project the computational model will be that of Turing ma-
chines. Turing machines are well-known models for universal computation. This
means, that anything that can be computed at all, can be computed on a Turing
machine.

In its simplest form, a Turing machine consists of a two-way infinite tape that
is divided in adjacent cells. Each cell can be either blank or contain a non-blank
color (symbol). The Turing machine comes with a “head” that can move over the
cells of the tape. Moreover, the machine can be in a different state. At each step
in time, the machine reads what color is under the head, and then, depending on
in what state it is writes a (possibly) new color in the cell under the head, goes
to a (possibly) new state and have the head move either left or right. A specific
Turing machine is completely determined by its behavior at these time steps.
One often speaks of a transition rule, or a transition table. Figure 1 depicts
graphically such a transition rule when we only allow for 2 colors, black and
white.

TM number 2506

State 1:

State 2:

Fig. 1. Transition table of a 2-color 2-state Turing machine with rule 2506 according
to Wolfram’s enumeration and Wolfram’s visual representation style [12].

For example, the head of this machine will only move to the right, write a
black color and go to state 2 whenever the machine was in state 2 and it read a
blank symbol.

1.3 Relating notions of complexity

We relate and explore throughout the experiment the connections between de-
scriptional complexity and time computational complexity. One way to increase
the descriptional complexity of a Turing machine is enlarging its transition table
description by adding a new state. Our current findings suggest that even if a
more efficient Turing machine algorithm solving a problem instance may exist,
the probability of picking a machine algorithm at random solving the problem
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in a faster time has probability close to 0 because the number of slower Tur-
ing machines computing a function outnumbers the number of possible Turing
machines speeding it up by a fast growing function.

This suggests that the theoretical problem of P versus NP might be discon-
nected to the question in practice when using brute force techniques. Disregard-
ing the answer to the P versus NP as a theoretical problem, efficient heuristics to
search for the P time algorithm may be required, other than picking it at random
or searching it by exhaustive means, for otherwise the question in practice may
have a different answer in the negative independent of the theoretical solution.
We think our approach provides insights in this regard.

1.4 Investigating the micro-cosmos of small Turing machines

We know that small programs are capable of great complexity. For example,
computational universality occurs in cellular automata with just 2 colors and
nearest neighborhood (Rule 110) [12, 3] and also (weak) universality in Turing
machines with only 2-states and 3-colors [13].

For all practical purposes one is restricted to perform experiments with small
Turing machines (TMs) if one pursuits a thorough investigation of complete
spaces for a certain size. Yet the space of these machines is rich and large enough
to allow for interesting and insightful comparison, draw some preliminary con-
clusions and shed light on the relations between measures of complexity.

To be more concrete, in this paper, we look at TMs with 2 states and 2
colors and compare them to TMs with 3 states and 2 colors. The main focus is
on the functions they compute and the runtimes for these functions4. Some of
the questions we try to answer include what kind of, and how many functions are
computed in each space? What kind of runtimes and space-usage do we typically
see and how are they arranged over the TM space?

2 Methodology

From now on, we shall write (2,2) for the space of TMs with 2 states and 2
colors, and (3,2) for the space of TMs with 3 states and 2 colors. Let us briefly
restate the set-up of our experiment.

2.1 Methodology in short

We look at TMs in (2,2) and compare them to TMs in (3,2). In particular we
shall study the functions they compute5 and the time they take to compute in
each space.

4 We shall often refer to the collection of TMs with k colors and s states as a TM
space.

5 It is not hard to see that any function that is computed in (2,2) is also present in
(3,2).
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The way we proceeded is as follows. We ran all the TMs in (2,2) and (3,2)
for 1000 steps for the first 21 input values 0, 1, . . . , 20. If a TM does not halt
by 1000 steps we simply say that it diverges. Thus, we collect all the functions
on the domain [0, 20] computed in (2,2) and (3,2) and investigate and compare
them in terms of run-time, complexity and space-usage.

Clearly, at the outset of this project we needed to decide on at least the
following issues:

1. How to represent numbers on a TM?
2. How to decide which function is computed by a particular TM.
3. Decide when a computation is considered finished.

The next subsections will fill out the details of the technical choices made
and provide motivations for these choices. Our set-up is reminiscent of and surely
motivated by a similar investigation in Stephan Wolfram’s book [12], Chapter
12, Section 8.

2.2 Resources

There are (2sk)
sk

s-state k-color Turing machines. That means 4 096 in (2,2) and
2 985 984 TMs in (3,2). In short, the number of TMs grows exponentially in the
amount of resources. Thus, in representing our data and conventions we should
be as economical as possible in using our resources so that exhaustive search in
the spaces still remains feasible. For example, an additional halting state will
immediately increase the search space6.

2.3 One-sided Turing Machines

In our experiment we have chosen to work with one-sided TMs. That is to say, we
work with TMs with a tape that is unlimited to the left but limited to the right-
hand side. One sided TMs are a common convention in the literature just perhaps
after the more common two sided convention. The following considerations led
us to work with one-sided TMs.

- Efficient (that is, non-unary) number representations are place sensitive.
That is to say, the interpretation of a digit depends on the position where
the digit is in the number. Like in the decimal number 121, the leftmost 1
corresponds to the centenaries, the 2 to the decades and the rightmost 1 to
the units. On a one-sided tape which is unlimited to the left, but limited on
the right, it is straight-forward how to interpret a tape content that is almost
everywhere zero. For example, the tape . . . 00101 could be interpreted as a
binary string giving rise to the decimal number 5. For a two-sided infinite
tape one can think of ways to come to a number notation, but all seem rather
arbitrary.

6 Although in this case not exponentially so as halting states define no transitions.
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- With a one-sided tape there is no need for an extra halting state. We say
that a computation simply halts whenever the head “drops off” the tape
from the right hand side. That is, when the head is on the extremal cell on
the right hand side and receives the instruction to moves right. A two-way
unbounded tape would require an extra halting state which, in the light of
considerations in 2.2 is undesirable.

On the basis of these considerations, and the fact that some work has been done
before in the lines of this experiment [12] that also contributed to motivate our
own investigation, we decided to fix the TM formalism and choose the one-way
tape model.

2.4 Unary input representation

Once we had chosen to work with TMs with a one-way infinite tape, the next
choice is how to represent the input values of the function. When working with
two colors, there are basically two choices to be made: unary or binary. However,
there is a very subtle point if the input is represented in binary. If we choose for
a binary representation of the input, the class of functions that can be computed
is rather unnatural and very limited.

The main reason is as follows. Suppose that a TM on input x performs some
computation. Then the TM will perform the very same computation for any
input that is the same as x on all the cells that were visited by the computation.
That is, the computation will be the same for an infinitude of other inputs thus
limiting the class of functions very severely. Thus, it will be unlikely that some
universal function can be computed for any natural notion of universality.

On the basis of these considerations we decided to represent the input in
unary. Moreover, from a theoretical viewpoint it is desirable to have the empty
tape input different from the input zero, thus the final choice for our input
representation is to represent the number x by x+ 1 consecutive 1’s.

The way of representing the input in this way has two serious draw-backs:

1. The input is very homogeneous. Thus, it can be the case that TMs that
expose otherwise very rich and interesting behavior, do not do so when the
input consists of a consecutive block of 1’s.

2. The input is lengthy so that runtimes can grow seriously out of hand. See
also our remarks on the cleansing process below.

2.5 Binary output convention

None of the considerations for the input conventions applies to the output con-
vention. Thus, it is wise to adhere to an output convention that reflects as
much information about the final tape-configuration as possible. Clearly, by in-
terpreting the output as a binary string, from the output value the output tape
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configuration can be reconstructed. Hence, our outputs, if interpreted, will be so
as binary numbers.

The output representation can be seen as a simple operation between systems,
taking one representation to another. The main issue is, how does one keep the
structure of a system when represented in another system, such that, moreover,
no additional complexity is introduced.

For the tape identity (see Definition 2), for example, one may think of rep-
resentations that, when translated from one to another system, preserve the
simplicity of the function. Some will do so such as taking the output in unary. If
one uses a unary representation to feed the Mathematica function FindSequence-
Function7 that will find out, by looking at the sequence of outputs in the chosen
representation, that it is about the identity function as one would immediately
tell upon looking at the pictogram of the Turing machine. But unary does not
work for all other Turing machine evolutions.

For example, when taking the output tape configuration as written in binary,
many functions expose (at least) exponential growth. For the tape-identity, that
is a TM that outputs the same tape configuration as the input tape configura-
tion, the function TM(x) = 2x+1−1 is the sequence generator under this output
representation, rather than TM(x) = x. In particular, the TM that halts imme-
diately by running off the tape while leaving the first cell black also computes
the function 2x+1 − 1.

These concerns, although legitimate and rich in discussion are undesirable,
but as we shall see, in our current set-up there will be few occasions where we
actually do interpret the output as a number other than for representational
purposes.

2.6 The halting problem and Rice’s theorem

By the halting problem and Rice’s theorem we know that it is in general unde-
cidable to know wether a function is computed by a particular TM and whether
two TMs define the same function. The latter is the problem of extensionality
(do two TMs define the same function?) known to be undecidable by Rice’s
theorem. It can be the case that for TMs of the size considered in this paper,
universality is not yet attained8, that the halting problem is actually decidable
in these small spaces and likewise for extensionallity.

7 This function in Mathematica may be seen as a specific purpose Turing machine
for which a compiler is needed so that one can provide as input to this function
the output of one of our Turing machines. FindSequenceFunction will then attempt
to find a simple function that yields the sequence when given successive integer
arguments.

8 Recent work by [15] have shown some small two-way infinite tape universal TMs.
It is known that there is no universal machine in the space of two-way unbounded
tape (2,2) Turing machines but there is known at least one weak universal Turing
machine in (2,3)[12] and it may be (although unlikely) the case that a weak universal
Turing machine in (3,2) exists.
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As to the halting problem, we simply say that if a function does not halt after
1000 steps, it diverges. Theory tells that the error thus obtained actually drops
exponentially with the size of the computation bound [6] and we re-affirmed this
in our experiments too as is shown in Figure 2. After proceeding this way, we
see that certain functions grow rather fast and very regular up to a certain point
where they start to diverge. These obviously needed more than 1000 steps to ter-
minate. We decided to complete these obvious non-genuine divergers manually.
This process is referred to as cleansing, Of course some checks were performed
as to give more grounds for doing so. We are fully aware that errors can have
occurred in the cleansing. For example, a progression of a TM is guessed and
checked for two values. However, it can be the case that for the third value our
guess was wrong: the Halting Problem is undecidable and our approximation is
better than doing nothing.

As to the problem of extensionality, we simply state that two TMs calculate
the same function when they compute (after cleansing) the same outputs on the
first 21 inputs 0 through 20 with a computation bound of 1000 steps. We found
some very interesting observations that support this approach: for the (2,2) space
the computable functions are completely determined by their behavior on the
first 3 input values 0,1,2. For the (3, 2) space the first 8 inputs were found to be
sufficient to determine the function entirely.

2.7 Running the experiment

To explore the different spaces of TMs we have programmed in C language a
TM simulator. We tested this C language simulator against the TuringMachine

function in Mathematica as it used the same encoding for TMs. It was checked
and found in concordance for the whole (2,2) space and a sample of the (3,2)
space.

We have run the simulator in the cluster of the CICA (Centro de Informática
Cient́ıfica de Andalućıa9). To explore the (2,2) space we used only one node of
the cluster and it took 25 minutes. The output was a file of 2 MB. For (3,2)
we used 25 nodes (50 microprocessors) and took a mean of three hours in each
node. All the output files together fill around 900 MB.

3 Results

Definition 1. In our context and in the rest of this paper, an algorithm com-
puting a function is one particular set of 21 quadruples of the form

〈input value, output value, runtime, space usage〉
where the output, runtime and space-usage correspond to that particular input.

Definition 2. We say that a TM computes the tape identity when the tape
configuration at the end of a computation is identical to the tape configuration
at the start of the computation.

9 Andalusian Centre for Scientific Computing.
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3.1 Investigating the space of 2-states, 2-colors Turing machines

In the cleansed data of (2,2) we found 74 functions and a total of 253 different
algorithms computing them.

Determinant initial segments An indication of the complexity of the (2,2)
space is the number of outputs needed to determine a function. In the case of
(2,2) this number of outputs is only 3. For the first output there are 11 different
outputs. The following list shows these different outputs (first value in each
pair) and the frequency they appear with (second value in each pair). Output
-1 represents the divergent one:

{{3, 13}, {2, 12}, {-1, 10}, {0, 10}, {1, 10}, {7, 6}, {6, 4},

{15, 4}, {4, 2}, {5, 2}, {31, 1}}

For two outputs there are 55 different combinations and for three we find
the full 74 functions. The first output is most significant; without it, the other
outputs only appear in 45 different combinations. This is because there are many
functions with different behavior for the first input than for the rest.

We find it interesting that only 3 values of a TM are needed to fully determine
its behavior in the full (2,2) space that consists of 4 096 different TMs. Just as
a matter of analogy we bring the C∞ functions to mind. These infinitely often
differentiable continuous functions are fully determined by the outputs on a
countable set of input values. It is an interesting question how the minimal
number of output values needed to determine a TM grows relative to the total
number of (2 · s · k)s·k many different TMs in (s,k) space.

Halting probability In the cumulative version of Figure 2 we see that more
than 63% of executions stop after 50 steps, and little growth is obtained after
more steps. Considering that there is an amount of TMs that never halt, it is
consistent with the theoretical result in [6] that most TMs stop quickly or never
halt.

We find it interesting that Figure 2 shows features reminiscent of phase tran-
sitions. Completely contrary to what we would have expected, these “phase
transitions” were even more pronounced in (3, 2) as one can see in Figure 10.

Runtimes There is a total of 49 different sequences of runtimes in (2,2). This
number is 35 when we only consider total functions. Most of the runtimes grow
linear with the size of the input. A couple of them grow quadratically and just
two grow exponentially. The longest halting runtime occurs in TM numbers 378
and 1351, that run for 8 388 605 steps on the last input, that is on input 20.

Below follows the sequence of {input, output, runtime, space} for TM
number 378:
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Fig. 2. Halting times in (2,2).

{{0, 1, 5, 1}, {1, 3, 13, 2}, {2, 7, 29, 3}, {3, 15, 61, 4},

{4, 31, 125, 5}, {5, 63, 253, 6}, {6, 127, 509, 7}, {7, 255,

1021, 8}, {8, 511, 2045, 9}, {9, 1023, 4093, 10}, {10, 2047,

8189, 11}, {11, 4095, 16381, 12}, {12, 8191, 32765, 13},

{13, 16383, 65533, 14}, {14, 32767, 131069, 15}, {15, 65535,

262141, 16}, {16, 131071, 524285, 17}, {17, 262143, 1048573,

18}, {18, 524287, 2097149, 19}, {19, 1048575, 4194301, 20},

{20, 2097151, 8388605, 21}}

Rather than exposing lists of values we shall prefer to graphically present our
data. The output values are graphically represented as follows. On the fist line
we depict the tape output on input zero (that is, the input consisted of just one
black cell). On the second line we depict the tape output on input one (that is,
the input consisted of two black cells), etc. By doing so, we see that the function
computed by 378 is just the tape identity.

Let us focus on all the (2,2) TMs that compute that tape identity. We will
depict most of the important information in one overview diagram. This diagram
as shown in figure 3 contains at the top a graphical representation of the function
computed as described above.

Below the representation of the function, there are six graphs. On each hori-
zontal axis of these graphs, the input is plotted. The τi is a diagram that contains
plots for all the runtimes of all the different algorithms computing the function
in question. Likewise, σi depicts all the space-usages occurring. The <τ> and
<σ> refer to the (arithmetical) average of time and space usage. The subscript
h indicates that the harmonic average is calculated. As the harmonic average is
only defined for non-zero numbers, for technical reasons we depict the harmonic
average of σi + 2 rather than for σi.

The harmonic mean of the runtimes can be interpreted as follows. Each TM
computes the same function. Thus, the total information in the end computed
by each TM per entry is the same although runtimes may be different. Hence
the runtime of one particular TM on one particular input can be interpreted as
time/information. If we consider the following situation:
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Let the TMs computing a function be {TM1, . . . , TMn with runtimes t1,
. . . , tn}.

If we let TM1 run for 1 time unit, next TM2 for 1 time unit and finally
TMn for 1 time unit, then the amount of information of the output computed
is 1/t1 + ...+ 1/tn. The corresponding average of this impact function is exactly
the harmonic mean, hence the introduction of the harmonic mean as an inter-
pretation of the typical amount of information computed by a random TM in a
time unit.

The image provides the basic information
of the TM outputs depicted by a diagram
with each row the output of each of the 21
inputs, followed by the plot figures of the
average resources taken to compute the
function, preceded by the time and space
plot for each of the algorithm computing
the function. For example, this info box
tells us that there are 1 055 TMs comput-
ing the identity function, and that these
TMs are distributed over just 12 differ-
ent algorithms (i.e. TMs that take differ-
ent space/time resources). Notice that at
first glance at the runtimes τi, they seem
to follow just an exponential sequence
while space grows linearly. However, from
the other diagrams we learn that actually
most TMs run in constant time and space.
Note that all TMs that run out of the tape

in the first step without changing the cell
value (the 25% of the total space) compute
this function.

Fig. 3. Overview diagram of the tape identity.

Runtimes and space-usages Observe the two graphics in Figure 4. The left
one shows all the runtime sequences in (2,2) and the right one the used-space
sequences. Divergences are represented by −1, so they explain the values below
the horizontal axis. We find some exponential runtimes but most of them and
space-usage remain linear.

An interesting feature of Figure 4 is the clustering. For example, we see that
the space usage comes in three different clusters. The clusters are also present in
the time graphs. Here the clusters are less prominent as there are more runtimes
and the clusters seem to overlap. It is tempting to think of this clustering as
rudimentary manifestations of the computational complexity classes.

Another interesting phenomenon is observed in these graphics. It is that of
alternating divergence, detected in those cases where value −1 alternates with
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Fig. 4. Runtime and space distribution in (2,2).

the other outputs, spaces or runtimes. The phenomena of alternating divergence
is also manifest in the study of definable sets.

Definable sets Like in classical recursion theory, we say that a set W is defin-
able by a (2,2) TM if there is some machine M such that W = WM where WM

is defined as usual as
WM := {x|M(x) ↓}.

Below follows an enumeration of the definable sets in (2,2).

{{}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20}, {0}, {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20},

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20}, {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, {0, 1}}

It is easy to see that the definable sets are closed under complements.

Clustering per function We have seen that all runtime sequences in (2,2)
come in clusters and likewise for the space usage. It is an interesting observation
that this clustering also occurs on the level of single functions. Some examples
are reflected in Figure 5.

Computational figures reflecting the number of available resources
Certain functions clearly reflect the fact that there are only two available states.
This is particularly noticeable from the period of alternating converging and
non-converging values and in the offset of the growth of the output, and in
the alternation period of black and white cells. Some examples are included in
Figure 6.

Computations in (2,2) Let us finish this analysis with some comments about
the computations that we can find in (2,2). Most of the TMs perform very simple
computations. Apart from the 50% that in every space finish the computations
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Fig. 5. Clustering of runtimes and space-usage per function.

Fig. 6. Computational figures reflecting the number of available resources.
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in just one step (those that move to the right from the initial state), the general
pattern is to make just one round through the tape and back. It is the case for
TM number 2240 with the sequence of runtimes:

{5, 5, 9, 9, 13, 13, 17, 17, 21, 21, ..}

Fig. 7. Turing machine tape evolution for rule 2240.

TM 2205 however is interesting in that it shows a clearly localized and prop-
agating pattern that contains the essential computation. Most TMs that cross
the tape just once and then go back to the beginning of the tape expose behavior
that is a lot simpler and only visit each cell twice.

Figure 7 shows the sequences of tape configurations for inputs 0 to 5. The
walk around the tape can be more complicated. This is the case for TM number
2205 with the runtime sequence:

{3, 7, 17, 27, 37, 47, 57, 67, 77, ...}

it has a greater runtime but it only uses that part of the tape that was given
as input, as we can see in the computations (figure 8, left). In this case the pat-
tern is generated by a genuine recursive process thus explaining the exponential
runtime.

The case of TM 1351 is one of the few that escapes from this simple behavior.
As we saw, it has the greatest runtimes in (2,2). Figure 8 (right) shows its tape
evolution. Note that it is computing the tape identity. Many other TMs in (2,2)
compute this function in linear or constant time.

In (2,2) we also witnessed TMs performing iterative computations that gave
rise to mainly quadratic runtimes.

As most of the TMs in (2,2) compute their functions in the easiest possible
way (just one crossing of the tape), no significant speed-up can be expected.
Only slowdown is possible in most cases.

3.2 Investigating the space of 3-state, 2-color Turing machines

In the cleansed data of (3,2) we found 3886 functions and a total of 12824
different algorithms that computed them.

Determinant initial segments As these machines are more complex than
those of (2,2), more outputs are needed to characterize a function. From 3 re-
quired in (2,2) we need now 8, see Figure 9.
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Fig. 8. Tape evolution for rules 2205 (left) and 1351 (right).

2 4 6 8
outputs

1000

2000

3000

functions
Number of characterized functions

Fig. 9. Number of outputs required to characterize a function in (3,2).

Halting probability Figure 10 shows the runtime probability distributions in
(3,2). The same behavior that we commented for (2,2) is also observed. Note
that the “phase transitions” in (3,2) are even more pronounced than in (2,2). It
is tempting to think as those phase transitions as rudimentary manifestations of
computational complexity classes. Further investigation should show whether the
distinct regions correspond to particular methods employed by the TMs in that
region. Amongst those method we see as most prominent modes of computing
the following: running off the tape (almost) immediately; going from the initial
head position to the end of the input and back to the beginning again; iterating
a particular process several times; recursion.
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Fig. 10. Runtime proprobability distributions in (3,2).

Runtimes and space-usages In (3,2) the number of different runtimes and
space usage sequences is the same: 3676. Plotting them all as we did for (2,2)
would not be too informative in this case. So, Figure 11 shows samples of 50
sequences of space and runtime sequences. Divergent values are omitted as to
avoid big sweeps in the graphs caused by the alternating divergers. As in (2,2)
we observe the same phenomenon of clustering.

0 5 10 15 20
input

200

400

600

800

1000
space

0 5 10 15 20
input

200

400

600

800

1000
time

Fig. 11. Sampling of 50 space (left) and runtime (right) sequences in (3,2).

Definable sets Now we have found 100 definable sets. Recall that in (2,2)
definable sets were closed under taking complements. It does not happens now.
There are 46 definable sets, as

{{}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}, ...}

that coexist with their complements, but another 54, as

{{0, 3}, {1, 3}, {1, 4}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}, ...}

are definable sets but their complements are not.

Clustering per function In (3,2) the same phenomenon of the clustering of
runtime and space usage in single functions also happens. Moreover, as Figure 12
shows, exponential runtime sequences may occur in a (3,2) function (left) with
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Fig. 12. Clustering per function in (3,2).

other linear behaviors, some of them already present in the (2,2) computations
of the function (right).

Exponential behavior in (3,2) computations Recall that in (2,2) most
convergent TMs complete their computations in linear time. Now (3,2) presents
more interesting exponential behavior, not only in runtime but also in used space.

The max runtime in (3,2) is 894 481 409 steps found in the TMs number
599063 and 666364 (a pair of twin rules10) at input 20. The values of this function
are double exponential. All of them are a power of 2 minus 2. Look at the first
outputs:

{14, 254, 16382, 8388606, 137438953470, ... }

Adding 2 to each value, the logarithm to base 2 of the output sequence is:

{4, 8, 14, 23, 37, 58, 89, 136, 206, 311, 469, 706, 1061,

1594, 2393, 3592, 5390, 8087, 12133, 18202, 27305}

Figure 13 displays these logarithms, and the runtime and space sequences.

Finally, Figure 14 shows the tape evolution with inputs 0 and 1. The pattern
observed on the right repeats itself.

10 We call two rules in (3,2) twin rules whenever they are exactly the same after
switching the role of State 2 and State 3.
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Logarithm to 2 of the outputs of TM 599063

5 10 15 20
input

5.0 ´ 107

1.0 ´ 108
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2.0 ´ 108
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5000
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Space usage of TM 599063

Fig. 13. Rule number 599063. Logarithm to base 2 of the outputs (left), runtime (cen-
ter) and space usage (right).

Fig. 14. Tape evolution for rule 599063.

4 Comparison between (2,2) and (3,2)

The most prominent conclusion from this section is that slow-down of a compu-
tation is more likely than speed-up.

4.1 Runtimes comparison

In this section we compare the types of runtime progressions we encountered
in our experiment. We use the big O notation to classify the different types of
runtimes. Again, it is clear to bear in mind that our findings are based on just
21 different inputs.

As shown no essentially (different asymptotic behavior) faster runtime was
found in (3,2), no speed up was found other than by a linear factor as reported
in the next section (4.2). That is, no algorithm in (3,2) computing a function in
(2,2) was faster than the fastest algorithm computing the same function in (2,2).
Obviously (3,2) computes a larger set of functions and they shall be compared to
the next larger (4,2) space of TMs. Amusing findings were Turing machines both
in (2,2) and (3,2) computing the identify function in as much as exponential time,
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as an example of machines spending all resources to compute a simple function.
Another example is the constant function f(n) = 0 computed in n9 or n19, and
f(n) = 1 computed in as much as exponential time as well, these in (3,2).

In the table, the first column is the function index from 1 to 74 occurred in
both (2,2) and (3,2). Under (2,2) is the distribution of time complexity classes for
the function in that row in (2,2), followed by the distribution of time complexity
classes computing the same function in (3,2). Each time complexity class is fol-
lowed by the number of occurrences among the algorithms in that TM space and
for each function, sorted from greater to lower. No complexity class is estimated
if the sequence is divergent, such as for function 1.

Function # (2,2) (3,2)
1 None None

2 O(n), 46
O(n), 1084; O(1), 129; O(n19), 46
O(n3), 8; O(n2), 6

3 O(n), 9
O(n), 93; O(n2), 12; O(Exp), 5
O(1), 2; O(n19), 1

4 O(n), 5
O(n), 60; O(n2), 9; O(Exp), 4
O(n19), 1

5 O(n), 2 O(n), 133; O(n2), 2

6 O(n), 3 O(n), 61; O(1), 7; O(n3), 1

7 O(n), 5; O(1), 4; O(Exp), 3
O(1), 46; O(n), 32; O(Exp), 17
O(n2), 6

8 O(n), 2 O(n), 34
9 O(n), 1 O(n), 34
10 O(n), 1 O(n), 12; O(n2), 1
11 O(n), 2 O(n), 25; O(n2), 4; O(Exp), 2
12 O(n), 3 O(n), 70; O(n2), 1
13 O(1), 2 O(1), 12
14 O(1), 5 O(1), 23; O(n), 8
15 O(1), 3 O(1), 11
16 O(1), 3 O(1), 9
17 O(n2), 1 O(n2), 13
18 O(n), 1 O(n), 12
19 O(n), 2 O(n), 54; O(n2), 4
20 O(n2), 1 O(n2), 11
21 O(n2), 1 O(n2), 11
22 O(n), 1 O(n), 14
23 O(1), 3 O(1), 9
24 O(n2), 1 O(n2), 12
25 O(n), 5 O(n), 38; O(n9), 2; O(n2), 1
26 O(n), 4 O(n), 14
27 O(1), 1 O(1), 6
28 O(1), 1 O(1), 7

193



Function # (2,2) (3,2)
29 O(1), 39 O(1), 107
30 O(1), 1 O(1), 7
31 O(1), 3 O(1), 25
32 O(1), 1 O(1), 5; O(n), 1
33 O(1), 9 O(1), 9; O(n), 7; O(Exp), 3
34 O(1), 23 O(1), 58; O(n), 13; O(Exp), 1
35 O(n), 2 O(n), 31; O(n2), 2
36 O(n), 1 O(n), 19; O(1), 3
37 O(n), 1 O(n), 12
38 O(1), 1 O(1), 23; O(n), 1
39 O(1), 1 O(1), 16
40 O(n), 1 O(n), 6; O(1), 3
41 O(1), 1 O(1), 23
42 O(1), 4 O(1), 42; O(n), 1
43 O(1), 2 O(1), 16
44 O(1), 1 O(1), 22; O(n), 1
45 O(1), 1 O(1), 8
46 O(1), 1 O(1), 14; O(n), 2
47 O(n), 1 O(n), 57; O(1), 26
48 O(n), 1 O(n), 32
49 O(n), 1 O(n), 17; O(1), 14
50 O(n), 1 O(n), 15
51 O(n), 1 O(n), 15
52 O(n), 1 O(n), 12
53 O(1), 1 O(1), 10
54 O(1), 3 O(1), 70
55 O(1), 3 O(1), 17; O(n), 1
56 O(1), 6 O(1), 35; O(n), 7
57 O(1), 1 O(1), 21; O(n), 4; O(Exp), 2
58 O(1), 1 O(1), 22
59 O(1), 1 O(1), 15; O(n), 7
60 O(n), 1 O(n), 37; O(1), 1
61 O(n), 1 O(n), 45; O(1), 3
62 O(n), 1 O(n), 20; O(1), 15
63 O(n), 1 O(n), 11
64 O(n), 1 O(n), 31; O(1), 2
65 O(n), 1 O(n), 21
66 O(1), 1 O(1), 20
67 O(1), 1 O(1), 25
68 O(1), 1 O(1), 11
69 O(1), 2 O(1), 16
70 O(n), 1 O(n), 4; O(1), 3
71 O(n), 1 O(n), 20; O(1), 1
72 O(1), 1 O(1), 4
73 O(n), 1 O(n), 10
74 O(n), 1 O(n), 12; O(1), 2
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Fig. 15. Time complexity distributions of (2,2) (left) and (3,2) (right).

As shown in this time complexity table comparing runtimes between (2,2)
and (3,2), no speed up was found other than by a linear factor as reported in
the next subsection (4.2). That is, no algorithm in (3,2) computing a function in
(2,2) was faster than the fastest algorithm computing the same function in (2,2).
Obviously (3,2) computes a larger set of functions and they shall be compared
to the next larger (4,2) space of TMs. An amusing finding were Turing machines
both in (2,2) and (3,2) computing the identify function in as much as exponential
time, as an example of a machine spending all resources to compute a simple
function.

4.2 Quantifying the linear speed-up factor

For obvious reasons all functions computed in (2,2) are computed in (3,2). The
most salient feature in the comparison of the (2,2) and (3,2) spaces is the promi-
nent slowdown indicated by both the arithmetic and the harmonic averages.
(3,2) spans a larger number of runtime classes. Figures 16 and 17 are examples
of two functions computed in both spaces in a side by side comparison with the
information of the function computed in (3,2) on the left side and the function
computed by (2,2) on the right side. Notice that the numbering scheme of the
functions indicated by the letter f followed by a number may not be the same
because they occur in different order in each of the (2,2) and (3,2) spaces but
they are presented side by side for comparison with the corresponding function
number in each space.

One important calculation experimentally relating descriptional (program-
size) complexity and (time resources) computational complexity is the compar-
ison of maximum of the averages on inputs 0,. . .,20, and the estimation of the
speed-ups and slowdowns factors found in (3,2) with respect to (2,2).

It turns out that 19 functions out of the 74 computed in (2,2) and (3,2) had at
least one fastest computing algorithm in (3,2). That is 0.256 of the 74 functions
in (2,2). A further inspection reveals that among the 3 414 algorithms in (3,2),
computing one of the functions in (2,2), only 122 were faster. If we supposed
that “chances” of speed-up versus slow-down on the level of algorithms were
fifty-fifty, then the probability that we observed at most 122 instantiations of
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Fig. 16. Side by side comparison of an example computation of a function in (2,2) and
(3,2) (the identity function).

Fig. 17. Side by side comparison of the computation of a function in (2,2) and (3,2).
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Fig. 18. Distribution of speed-up probabilities per function. Interpreted as the proba-
bility of picking a an algorithm in (3,2) computing faster an function in (2,2).

speed-up would be in the order of 10−108. Thus we can safely state that the
phenomena of slow-down at the level of algorithms is significant.

Figure 18 shows the scarceness of the speed-up and the magnitudes of such
probabilities. Figures 19 quantify the linear factors of speed-up showing the
average and maximum. The typical average speed-up was 1.23 times faster for
an algorithm found when there was a faster algorithm in (3,2) computing a
function in (2,2).

In contrast, slowdown was generalized, with no speed-up for 0.743 of the func-
tions. Slowdown was not only the rule but the significance of the slowdown much
larger than the scarce speed-up phenomenon. The average algorithm in (3,2) took
2 379.75 longer and the maximum slowdown was of the order of 1.19837 × 106

times slower than the slowest algorithm computing the same function in (2,2).
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Fig. 19. Speed up significance: on the left average and on the right maximum speed-
ups.
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5 Concluding

We have undertaken a systematic and exhaustive study of small Turing machine
with 2 colors and 2 and 3 states. For larger number of states, sampling was
unavoidable and results are yet to be interpreted. The Halting Problem and
other undecidable concerns for an experimental procedure such as the presented
herein, including the problem of extensionality, were overcome by taking a finite
and pragmatic approach (theory tells us that in various cases the corresponding
error drops exponentially with the size of the approximation[6]). Analyzing the
data gave us interesting functions with their geometrical patterns for which
average and best case computations in terms of time steps were compared against
descriptional complexity (the size of the machines in number of states).

Because picking an algorithm at random with uniform probability among
the algorithms computing a function in an increasingly larger Turing machine
space according to the maximum allowed number of states leads to increasingly
greater chances to pick a slow algorithm compared to the number of fastest
algorithms in the same space, one may say that an additional effort has to
be made, or additional knowledge has to be known, in order to pick a faster
algorithm without having to spend larger and larger resources in the search
of an efficient algorithm itself. One can say that this is a No free lunch-type
metaphor saying that speeding-up is not for free.

Exact evaluations with regard to runtimes and space-usages were provided
shedding light onto the micro-cosmos of small Turing machines, providing figures
of the halting times, the functions computed in (2,2) and (3,2) and the density
of converging versus diverging computations. We found that increasing the de-
scriptional complexity (viz. the number of states), the number of algorithms
computing less efficiently, relative to the previous found runtimes in (2,2), com-
puting a function grows faster than the number of machines more efficiently
computing it. In other words, given a function, the set of average runtimes in
(2,2) slows down in (3,2) with high probability.
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Abstract. Commenting about the fact that two matrices, 1 and −1,
within the 2-dimensional complex space, can be mapped onto the identity
matrix 1, in the 3-dimensional real space, Goldstein (1950) remarks that
this apparently strange fact has no “physical” meaning. The [complex]
space is a purely mathematical construction, conceived to establish a
correspondence between 2x2 and 3x3 matrices of a particular kind. Such
a space can not possess the same properties of the 3-dimensional physical
space. This paper is an attempt to endow the complex space with physical
and computational meaning.

1 Observability in Computation and Physics

The following quotation from Hermann Weyl’s 1949 book reveals both the in-
timate link between foundational issues in physics and mathematics as well as
their common root in Hilbert’s work.

The “physical process”undisturbed by observation is represented by a
mathematical formalism without intuitive [anschauliche] interpretation;
only the concrete experiment, the measurement by means of a grating,
can be described in intuitive terms. This contrast of physical process and
measurement has its analogue in the contrast of formalism and mean-
ingful thinking in Hilbert’s system of mathematics. (Weyl 1949, p. 261)

Hilbert’s finitist proof theory was intended to solve this contrast by “projecting”
continuous mathematics into discreteness. It failed. Gödel’s incompleteness the-
orems and Turing’s negative solution of the Entscheidungsproblem took Hilbert’s
proof theory to its limits as they showed that mathematical procedures cannot
be completely included in one “formal system”. Those limits, set by a Turing
machine, overlap with classical physics’.

However, at first in the 1930s, Gödel considered his incompleteness results not
as a failure Hilbert’s program, but rather as a claim “that through the transition
from evidence to formalism something is lost.” In his view, “questions which are
undecidable in a given formalism are always decidable by evident inferences not
expressible in the given formalism.” (Gödel 193?, p. 164) Therefore, his point was
that it is not possible to include mathematics in one formal system, but Hilbert’s
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conviction remained entirely untouched. But what is lost through the transition
from evidence to formalism? Is it possible to fill the gap between mathematical
evidence and logical formalism?

In Königsberg, in the fall of 1930, at almost the same time that Gödel was
sketching his incompleness results, at the Congress of Scientific Epistemology,
Hilbert addressed such questions in a lecture on Naturerkennen und Logik, de-
livered at the meeting of the Society of German Scientists and Physicists. The
issue, which came into focus with Kants transcendental philosophy, was the part
played in our understanding by logic on the one side and experience on the other.
Hilbert’s answer emerges from mathematics and the axiomatic method. Kant’s a
priori theory contains anthropomorphic dross from which it must be freed: “Af-
ter we remove that, only that a priori will remain which also is the foundation
of pure mathematical knowledge”. Nevertheless, Hilbert believes “that, in the
end, mathematical knowledge rests on a kind of intuitive insight [anschaulicher
Einsicht ], and that even for building up the theory of numbers a certain a priori
intuitive view is necessary. With this, the most general, basic idea of Kantian
epistemology retains its significance, namely, the philosophical problem of char-
acterizing that intuitive view and thus investigating the conditions of possibility
of all conceptual knowledge and, at the same time, of every experience.” In his
investigations of the foundations of mathematics, Hilbert tackled this problem
on the way of finitism, i.e. of arithmetic. And yet, on reflection, Hilbert’s vision
of geometry could provide a more comprehensive general frame:

At the time of Kant, one could well think that geometry was, like arith-
metic, something which precedes all natural knowledge. This Kantian
view was abandoned, since geometry is nothing but that part of the
whole conceptual framework of physics which represents the possible po-
sition relations among rigid bodies in the world of real objects. (Hilbert
1923)

While Gödel showed that it is impossible to carry a finitist analysis to such a
point that all the intuitive judgements of mathematics could be replaced by a
finite number of mechanical rules, Turing made clear what a mechanical rule is,
by imposing precise finiteness conditions on mathematical procedures. Thus, he
made clear how to distinguish when a step is purely formal and when a step
makes use of intuition. By grounding those conditions on physical processes, the
very necessity for intuition may then be characterized as emerging out of some
physical constrains.1

Computability limits set by Turing (1936) are motivated as boundedness con-
ditions on the configurations of symbols which are operated on by a “computer”.
All such configurations must be “immediately recognisable” by the computer.
As he understood calculations as symbolic processes carried out by a computer,
Turing was able to impose restrictions on the operations permitted and justify
them through an analysis of the idealized capacities of the computer available

1 This line of research has been envisaged, in different ways, by Turing (1948), Gandy
(1980) and von Neumann (1954).
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for their execution. Therefore, he was able to conceive a machine playing the
role of the computer: its lay-out was modelled in an abstract symbolic structure,
i.e., a Turing machine. In arguing for the adequacy of his notion, Turing focused
on the essential (human) capacity involved in computing, namely distinguish-
ing symbols, and formulated it in terms of finiteness conditions on the symbols
scanned by the machine. In accordance with experience, “if we were to allow an
infinity of symbols, then there would be symbols differing to an arbitrarily small
extent.” (Turing 1936, p. 75)

By stretching the ideal of formalism and finitism - i.e., “to atomize math-
ematical reasoning into such tiny steps that nothing is left to the imagination,
nothing is left out!” (Chaitin 2002) - a Turing machine, on one hand, guarantees
to mathematics its “existence” via undecidability (von Neumann 1927); on the
other, it demands for indeterminism to be capable of “meaningful thinking”. By
connecting the effectiveness of computability to the “resolution power” of the
computer involved, Turing’s computability shows that, beside any “concrete”
physical process, any “effective” process of computation rests on observation. No
adequate understanding of effective procedures can dispense with the medium of
the agent (computer, observer or measurer) working out the operations involved.
Computational and physical theories are bound to observability constraints. But
quantum theory demands more, it demands to refine the very notion of “observ-
ability”.

2 Quantum Observability

Any physical theory is about observables, namely physical quantities which can
be measured on a system, but the classical presupposition that the measured
values correspond to objective properties of the system - “beables” - is not ten-
able in quantum theory because its observables can be incompatible. A quantum
state does not describe how things are but how their probabilities are weaved.
Quantum physics differs from classical physics as to the impossibility of perform-
ing certain measurements simultaneously with accuracy: a measurement is not
datum “copiative contemplation”, it is an inter-action between the system-to-
be-observed and the observer-system; hence, it establishes a connection between
the two parts. As far as measurement is viewed as a subject-object interaction,
with the twin requirement of freedom in choosing the observable to be questioned
and capability of distinguishing “incompatible” outcomes, quantum theory de-
mands to sharpen the probability relations associated with its possible states
and, consequently, to refine their mathematical representation. According to the
Heisenberg principle, the uncertainty in the value of one observable has to be
rigorously distinct from, but not independent of, the uncertainty in the values of
the others incompatible observables. Thus “incompatible” does not mean “not
able to coexist”, quite the contrary. Incompatible observables live within the
same representation space and are represented by operators which are mutually
transformable and do not commute.
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Physical quantities, which have no classical analogue, are the intrinsic spins of
quantum particles. Consider a triad Sα Sβ , Sγ representing the spin components
of an electron. Each of these observables is assumed to have two values, ‘+’ and
‘-’. Any “pure” state of the electron assigns probability 1 to exactly one value of
one observable, say (Sα,+), and probability 0 to the opposite value (Sα,−), and
the same probability 0.5 to the values of the incompatible observables (Sβ ,+)
and (Sβ ,−), (Sγ ,+) and (Sγ ,−). Accordingly, any pure state of one observable
is equidistant from the pure states of the other observables.

A unit sphere is a convenient way to visualize the symmetry and continuity
constraints on probabilities associated with such incompatible observables, keep-
ing in mind that the angular separation between “orthogonal” pure states of the
same observable doubles π

2 . If a pure state ψ of one observable is represented
by the point σ = (φ, θ) on the sphere,2 the second pure state of the same ob-
servable, orthogonal to the first, is represented by the antipode σ∗ = (π ± φ, θ).
As an “observer-subject”, the state ψ assigns probabilities to each experimental
question concerning the value of each observable Sσ over the sphere, i.e. concern-
ing the “object” σ+ ≡ (Sσ,+). The probability is a symmetrical and continuos
function f of the angular separation δ between any pair of states corresponding
to the points σ and ϑ on the sphere: pσ(ϑ) = f(δσ,ϑ) = pϑ(σ); hence ψ assigns
probability 1 to exactly one point, that that coincides with its own “point of
view”, namely when δ = 0, and the same probability pψ (σ) to all points on the
same ‘latitude’ as σ.

The point at issue is that no pure state of one observable can coincide with
a pure state of another observable, for all pure states must be distinguishable.
Here is the reason to require, beside orthogonality between pure states of one and
the same observable, that the operators representing incompatible observables
do not commute. However, by rotating the sphere, the diagram of Sσ–results
can be transformed into the diagram of Sϑ-results as the operators are mutually
transformable. Thus pure states of the same observable are invariantly mutually
orthogonal, while pure states of incompatible observables are mutually “oblique”.
That is how probabilities are assigned to quantum states over a unit sphere
according to the uncertainty principle.

Now we must distinguish between the visual three dimensional space contain-
ing the points σ and the representation space from which the usual algorithm
generates probability assignments (Hughes 1989). Since the possible outcomes of
each measurement are two, the representation space has to be two-dimensional.
How to render in two dimensions the network of probability relations amongst the
values of three incompatible observables? The symmetry group of unit sphere,
which is the set of all its rotations about its centre, has no representation in the
two-dimensional real space. A subtle invention is needed.

2 The azimuthal angle φ can vary as -π < φ ≤ π and the longitude θ as -π
2
< θ ≤ π

2
.
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3 Alberti’s Veil vs Einstein’s

Reflecting about the significance of quantum theory, John Bell (1973) underlined
that quantum theory is fundamentally about the results of “measurements”, and
therefore presupposes a “measurer” (or subject) in addition to the “system”
(or object). But a theory about “measurement” implies incompleteness of the
system and unanalyzed interventions from outside. Here is why the subject-object
distinction is viewed as an issue “at the very root of the unease that many people
still feel in connection with quantum mechanics.” Bell raised the question as to
how it can again become possible “to say of a system not that such and such
may be observed to be so but that such and such be so”. Can “Einstein’s veil”
be removed?

As mentioned above, the probabilities distribution over the unit sphere is a
uniform map of points whose angular separation is twice the angular separa-
tion between the corresponding quantum states. This doubling of angles recalls
Hamilton’s mistake in his attempt to give a meaning to imaginary units through
rotations. The fascinating story of the invention of “quaternions” is masterfully
told by Altmann (1992). Here it is worth recalling that Hamilton’s “original sin”
lies in interpreting a pure normalized quaternion Q =

[
cos π2 , sin

π
2 r
]

= [0, r] as
a vector r. But Q is not a vector, it is a rotation by π about the axis r, namely a
binary rotation. In two dimensions, such a rotation requires a reflection operator.

Almost four centuries before the invention

Fig. 1. Alberti’s veil

of quaternions, we can recognize a reflection
operator in the “Alberti’s veil”, the most elo-
quent icon of the invention of perspectiva pin-
gendi. It is wellknown that carrying over con-
cepts and methods of the medieval natural
perspective into a flat surface, the Renaissance
artists bring about the artificial perspective.
This inventio asks the light to get rid of any
“substantial” character and its rays to chal-
lenge the rules of Euclidean geometry: trav-
eling in parallel they meet in one point and
give rise to a pictorial space. The result is a
painted or drawn scene, which is supposed to
be indistinguishable from the image transmit-
ted by a glass or reflected by a mirror. It is
achieved by projecting the three-dimensional
vision on a plane, letting the flight lines con-
verge in a central point specularly symmetrical to the unmoving eye of the
painter-observer. In this representation space, every image is anchored to its
author-creator through Alberti’s veil acting as a “beam-splitter”.

A superb illustration of the epistemological value of artificial perspective is
provided by the subject-object specular symmetry emerging from the Arnolfinis
portrait by van Eyck. The clear signature of the artist is on the wall behind
the Arnolfinis: “Johannes de Eyck fuit hic 1434”. However, that “hic” set the
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painter not only in the historical space-time of the portrait, as a faber, but also in
the symbolic representation space of the painting, together with the Arnolfinis.
Approximately at the point where, according to the correct rules of perspective,
the flight lines would converge the outline of van Eyck is reflected in a mirror.

In this painting, the auto-portrait of the
painter and the ancillary role of writing (Jo-
hannes de Eyck fuit hic) make evident what,
some decades later, the artificial perspective
would set up as a “formal system”: the dis-
playing of the representation space through an
imaginary dimension traced to the painter’s
eye. To allow the picture to take shape a third
dimension must be added: then the Arnolfinis’
scene is unfolded to the rear, while the painter
is projected to the front by its mirror image.
The painter, as well as the observer, can bene-
fit from two “complementary” points of view:
one “real” - within the sensitive reality of the
person who watches the painting and sees the
frontal scene; the other “reflected” - within the reality constructed by art, beyond
the plane of the representation, where the other side of the scene is imagined.
The perspectival representation space enables the painter to be inside and outside
the representation, alternatively observer-subject and observed-object, because
the two conditions - observing and being observed - are symmetrical, mutually
transformable, thanks to the overturning in the painting.

Coming back to Hamilton’s concern about imaginary units, the first step is
to understand the meaning of the multiplication rule

i2 = −1

at the origins of complex algebra. On the Argand plane, one can easily see that
i rotates all objects of the form a + bi by π

2 .3 By repeating this operation, α is
rotated by π and changes sign.4 Accordingly, i2 = −1 is understood as a binary
rotation.

Quaternions arise by continuing the “doubling” process that gives us complex
numbers from real numbers. As an extension of complex numbers, Hamilton sees
them related to rotations. How? Quaternions are objects of the form a + bi +
cj+ dk, where a, b, c, d are real, and i, j, k are multiplied according to the rules

i2 = j2 = k2 = ijk = −1, ij = −ji = k.

A quaternion A = [a,A], where A = bi + cj + dk, will be normalized when

3 α = a+ bi⇒ iα = −b+ ai = α⊥.
4 iα = α⊥ ⇒ iα⊥ = − (a+ bi) = −α.
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|A|2 = a2 + |A|2 = 1.

So, all quaternions of the form [cosα, sinαn] with |n|2 = 1 are normalized; if
α = π

2 , then such quaternions are also pure. What is the meaning of a pure
normalized quaternion? What is the action of a normalized quaternion on a
pure normalized quaternion?

Following Hamilton, since quaternions are related to rotations and a pure
normalized quaternion is to identify with a unit vector, a normalized quater-
nion acting on a unit vector rotates the vector, i.e. it produces another pure
normalized quaternion. Thus, if ρ = [0, r] with |r| = 1,

Aρ = [cosα, sinαn] [0, r] = [0− sinαn · r, cosαr+ sinα (n× r)].

If n and r are orthogonal, the scalar product n · r will be null, and the outcome
is another pure normalized quaternion:

Aρ = [0, cosαr+ sinα (n× r)] = [0, r′] = ρ′ .

As to the geometrical interpretation, for Hamilton the action of the quaternion
A is the rotation R (αn), by the angle α about the axis n,

A = [cosα, sinαn]⇒ R (αn),

which transforms the vector r into r′ (see Fig. 2A). However, the correct meaning
of Aρ = ρ′ is given by Fig. 2B: the result of a binary rotation about r followed
by a rotation by 2α about the axis n, with r⊥n, is a binary rotation about r′,
with r′⊥n, at an angle α from r. (Simon 1992, p. 58)

Fig. 2. A: Hamilton’s rotation B: Binary rotation about r′

Therefore, if the quaternion A is interpreted as a rotation R (2αn), a pure nor-
malized quaternion, such as ρ, cannot be identified with a vector r, but rather
with a binary rotation R (πr):
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A = [cosα, sinαn]⇒ R (2αn)

ρ = [0, r] =
[
cos π2 , sin

π
2 r
]
⇒ R (πn)

It follows that, if an imaginary unit, like a pure normalized quaternion, is a
rotation by π,

i = [0, i]⇒ R (πi)

its square must be a rotation by 2π:

R (2πi)⇒ [cosπ, sinπi] = −1!

So a rotation by 2π is not the identity, it changes the sign of its operand.

4 Rotations, quaternions, and mirrors

According to Hermann Weyl (1952), the rotation symmetries of the space can be
condensed in the so-called four-group consisting of the identity and the binary
rotation [Umklappung ] around three mutually perpendicular axes. The require-
ment for binary rotations in R3 leads to introduce the reflection R∗ in the origin
which carries any point σ into its antipode σ∗. By including rotations of the form
R∗R in the four-group 4G one obtains the group 4G∗= 4G + R∗4G which dou-
bles 4G. Notice that Weyl praises Leonardo da Vinci for making up “a complete
list of orthogonally inequivalent finite groups of orthogonal transformations.”
[...]

The Cayley-Klein parameters provide the keys to transfer the group of rota-
tions of the real space R3 into the complex space C2: to any rotation which leaves
invariant the angular separation between points of the unit sphere, there corre-
sponds two unitary operators U and −U on the set of rays of C2, which leave
invariant the angular separation between rays. One peculiar feature of matrices
involving Cayley-Klein parameters is the presence of half-angles. As it happened,
Hamilton’s quaternions would turn into “Pauli spin matrices”. [...]

In C2, the general form of a matrix representing an observable Sσ can be
written as Sσ = xσx + yσy + zσz,

5 where σx, σy, σz are the Pauli spin matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

They are orthogonal “mirrors” perpendicular to x, y, z respectively.
[...]

The presence of half-angles in the 2x2 unitary matrices corresponding to 3x3
rotation matrices entails some strange properties of the complex representation

5 Sσ =

(
z x− iy

x+ iy −z

)
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space. Whereas, in the Euclidean space, a rotation by θ = 2π about z results in
the identity transformation R2π = 1, the corresponding matrix6 is U2π = −1!
Two 2x2 complex matrices, 1 and −1, correspond to the same 3x3 real matrix
1. When the unitary matrix U corresponds to one orthogonal real matrix, so
does −U. Does any physical meaning attach to the structure of such a space?
[...]

In quantum theory, incompatible observables are knitted together in a way
precisely captured by its representation space. Their mutual interdependence
has an essentially probabilistic character, but not of the kind found in classical
physics. The symmetries reflecting any quantum state and its alternatives de-
mand an “imaginary” dimension, hence complex probability amplitudes. The way
in which the probability relations between quantum observables are determined
by the symmetries of the Euclidean space typifies a way in which theoretical
constructions are determined by symmetries in nature. The way in which quan-
tum theory depicts those symmetries in the complex space is reminiscent of the
way in which theoretical constructions are determined by perspective in art.

Complex numbers provide quantum theory with a looking glass. Through the
looking glass, quantum observables become intelligible in their multiplicity and
mutability. May complex numbers also throw light on computational processes?

5 Search Algorithm through the Looking Glass

Grover’s search algorithm constitues a remarkable result for quantum computing.
It is a tecnique for searching N possibilities in O(

√
N) steps. In his 2001, Grover

calls for an incisive explanation:7

What is the reason that one would expect that a quantum mechanical
scheme could accomplish the search in O(

√
N) steps? It would be in-

sightful to have a simple two line argument for this without having to
describe the details of the search algorithm. (Grover 2001, p. 15)

Grover’s algorithm consists of repeated applica-

tions of the same unitary transformation O
(
2
n
2

)

times. The operation applied at each individual it-
eration, the “Grover iterate”, can be written G =
(2 |ψ〉 〈ψ| − 1)O. From a geometrical point of view,
it appears as a rotation of |ψ〉 in the space spanned
by the initial vector |ψ〉 and the state |k〉 consist-
ing of a uniform superposition of solutions to the
search problem.

In line with the argument sketched in this pa-
per, the reason for accomplishing the search in
O(
√
N) steps is that, in the computational space

opened by complex numbers, the rotation involved in the Grover’s algorithm can

6

Rθ =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


⇔ Uθ =

(
e
iθ
2 0

0 e−
iθ
2

)

7 I am grateful to Giuseppe Castagnoli for drawing my attention to this point. His
answer (2008) is that any quantum algorithm takes the time of a classical algorithm
knowing in advance 50% of the information that specifies the solution of the problem.
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be viewd as a double reflection about two rays whose angular separation is half
of the rotation angle. This double reflection, or double projection, seems to act
as a sort of “counter-diagonalization” reducing the number of steps from N to
the square root of N .
[...]
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A Completeness Theorem for General Relativity

Judit Madarász, Istvan Németi, and Gergely Székely
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Abstract. This talk is based on the tutorial: Adreka et. al. Axiomati-
zation of Physics in a logical framework. Our general aim is to axioma-
tize relativity theories in first-order logic. The scope of the tutorial con-
tains many theories of relativity ranging from special relativity through
general and cosmological relativity theories.
In this talk we will concentrate on general relativity. We will recall our
axiom system for general relativity from the tutorial and we will also
axiomatize Lorentzian manifolds in first-order logic.
Fulfilling the main aim of this talk, we are going to prove that these two
axiom systems are definitionally equivalent. This theorem means that
our axiomatic theory of general relativity and the theory of Lorentzian
manifolds are essentially the same theory.
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Access Control in a Hierarchy by Quantum

Means
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Abstract. Access control in a hierarchy refers to a selective access to a
database. A large number of users work with the same database. These
users are organized in a hierarchical structure and therefore have different
access rights to the data.
This paper offers a solution to the problem of access control in a hierarchy
based on quantum cryptography. Each user has two keys: a classical key
and a quantum key. Our scheme offers several security advantages over
the classical schemes to date. It protects users from identity theft and
prevents collusion attacks. Most importantly though, our scheme adapts
to dynamic changes of the user hierarchy: users may join, leave, or change
position in the hierarchy, without affecting the rest of the user structure.

Uj

Ui

Fig. 1. Formal sets in a poset.

1 Introduction

This paper revisits the problem of access control in a hierarchy [1]. A collection of
data, such as a database, is accessed by a very large number of users. Users have
different access rights to the data items. Regular users are organized in groups
and may access group specific data and data of general interest. Managers and
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directors are able to access data belonging to a whole category or group of users
and may also access data to remain secret from regular users. Groups of users
are organized as a partially ordered set (poset), where each node, or group of
users, represents a category with identical access rights (see Fig. 1). A node that
is in a parent position in the hierarchy shares all access rights of its children.

To formalize, consider two sets Ui and Uj (see Fig. 1), that are members of
the poset. The partial order Ui ≤ Uj means that Ui is on a lower level than Uj

in the poset. Additionally, there is a line in the diagram connecting Ui with Uj .
Ui, on the lower level, has less access rights than Uj , and conversely, Uj can do
anything that Ui can do.

2 Access Control in a Hierarchy Using Classical
Cryptography

Classical cryptographic solutions to the problem of access control build on a
system of secret keys. Each user has a secret key that is used by the encryp-
tion/decryption function to transform encoded information into readable format.
A manager or director, who is the root of a subtree, has a key that subsumes all
keys in the subtree [4].

The mechanism that uses secret keys, generally works with a secret encryp-
tion key ke and a secret decryption key kd. The original text v is encrypted with
an encryption function E to obtain the encrypted text u:

u = Eke (v).

The original text can be retrieved by decrypting u with the key kd:

v = Ekd(u).

Depending on the encryption method, the two keys, the encryption key and the
decryption key, may coincide.

Several cryptographic solutions have been proposed. They all come with a
specific range of successful applicability as well as their weakness or disadvan-
tages:

1. First straightforward solution. The first solution (see Fig. 2) begins by
assigning separate keys to all members of the poset. These keys are independent,
meaning one key cannot be obtained from another. The users of authority, higher
up in the poset, inherit all keys from children groups below. Though this solves
the problem of access to the database, the direct disadvantage is that groups
high in the poset own too many keys.

2. Solution for a totally ordered set. If instead of a poset, the users
are organized in a totally ordered set (see Fig. 3), there is a simple solution
that assigns exactly one key per user. We define a one-way function f and also
initialize the key of the root. Consequently, the key of a child is computed as the
function f of the key of the parent: ki = f(kj) and kl = f(ki). The child is given
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Uj

iU k i

k ik l

Ul

k j k kl i ...

Fig. 2. Straightforward cryptographic solution.

k i

k j

i

j

l k l

Fig. 3. Solution for a totally ordered set.

Uj

0t  =1

tj

Ui

U0

ti

Fig. 4. Solution to a poset that computes keys in an up-down fashion. First, assign
public integers t to each group in a partially ordered set, then compute the keys.
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its key only. Because of the noninversability of f , the child cannot compute the
keys of its ancestors.

3. Up-down computable keys for a partially ordered set. The method
we describe now, combines the advantages of the previous two methods. It assigns
exactly one secret key to each group of users, while preserving the order of a
partially ordered set. By choice, the root is the first to be assigned a secret key
K0. This key is known only to the root, thus hidden from anybody else in the
poset. Again, by choice, a number M is defined as the product of two large
primes p and q: M = p× q. The number M will be used for modulo operations.
Additionally, a structure of integers ti, tj , ..., is assigned to the poset (see Fig.
4). These integers are public.

1

2

4 6

3

9

Fig. 5. The integer assigned to a child node is a common multiple of the integers of its
parents.

The condition on the integers is that the integer of a parent divides the
integers of its children (see Fig. 5). Formally, if Ui ≤ Uj then tj |ti. For a node
with several parents, the integer assigned to it may be the least common multiple
of the integers of all parents, or simply some common multiple.

Now all secret keys can be computed. For group Ui, with its integer ti, the
secret key is a power of the initial K0:

Ki = K0
ti mod M.

Each user of some group Ui gets only the key of its group Ki.
This ingenious scheme now allows a user to compute all keys that are below

in the hierarchy. For Ui ≤ Uj, Uj , using Kj, can compute Ki, namely

Ki = K0
ti = [K0

tj ]
ti
tj = [Kj ]

ti
tj mod M.

By intention, Ui cannot compute Kj, as it is computationally intractable to
extract roots modulo a large number.
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This method gives simplicity to the access procedure. The major disadvan-
tage is that it can be broken by collusion attacks. This means that users on
lower levels can collaborate to compute a higher level key. The following is an
example of a collusion attack. Suppose Ul, with tl = 4, collaborates with Ui,
with ti = 9. Their secret keys are Kl = K0

4 and Ki = K0
9, respectively. The

operation (Kl)
−2Ki = K0

−8K0
9 = K0 mod M computes the secret key of the

root.

2

3 5

7 11 13
2x3x5x7x112x3x5x7x132x3x5x11x13

2x3x72x5x13

1

Fig. 6. Robust up-down computable keys using a structure of primes.

4. Robust up-down computable keys for a partially ordered set. The
shortcomings of the previous solution can be solved, by choosing the integers ti
appropriately. First, the poset is assigned a structure of primes pi (see Fig. 6).
The integer ti, associated with class Ui, will be defined as the product of all
primes associated with nodes not below Ui in the poset.

ti =
∏

Uj≤/Ui

pj

The secret keys are computed as beforeKi = K0
ti mod M . The advantage of this

scheme is that it eliminates collusion attacks. A parent can still easily compute
the keys of its children.

This scheme satisfies an organization where the users are stable, and few
people join or leave the organization over a considerable time. This may be
unrealistic in real life. If a user leaves the organization, the user’s secret key has
to be invalidated. This means right away that the whole group that the user
belonged to has to receive a new secret key. Because keys in the hierarchy are
interdependent, invalidating one key may affect a whole area of the poset. In the
worst case, the whole poset needs to receive new keys. The same problem arises
when a user gets a promotion and becomes a member of a different group. Again,
the same difficulty may appear when a new group of users are to be added. It
may be easier to add a group at the bottom of the poset and more difficult to
insert a group at some arbitrary level of the poset. In the literature [2] [3] [4]
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[5] [7] [8] [10], numerous schemes based on cryptography have been proposed to
address these problems, but none of them truly succeeds.

We will see in the next section that a quantum solution addresses many of
these issues.

3 Quantum Setting for Access Control

The quantum scheme designed here takes full advantage of quantum cryptogra-
phy [6] [9]. It achieves the following improvements. Any local change to a user
does not affect the other users. In particular, any user may join or leave the
system without affecting the other members of the user community. Also, if a
user changes its position in the hierarchy, such as being promoted to a manager
position, it is only this user’s key that will have to be changed.

[user

classical key

quantum key

011

1 H1 H0 0
access key
database

1 1 0 0

Fig. 7. Each user has two keys: a classical key and a quantum key.

3.1 Quantum Card and Classical Key

The access to the database is managed by two keys. Every user has two keys: a
classical key and a quantum key (see Fig. 7). The purpose of the user’s keys is to
provide the information necessary to generate a database access key, dbAccess.
The database access key is the one that defines the access rights of the user to
the database. dbAccess is not in the direct possession of the user. And again the
two keys that are in the possession of the user serve the sole purpose to retrieve
dbAccess and are meant to hide the value of dbAccess from the user.

The user’s classical key is a binary number. This number is unique for each
user and secret, expected to be known to that user only. It is the equivalent of
a password and thus it is the user’s responsibility to keep it secret.

216



The user’s quantum key is an array of qubits and is registered on a card.
The quantum key is a quantum encrypted version of the database access key
dbAccess. This key may be unique to the user or even unique for each session.
This means that each time a user connects to the database, the quantum card
may have another quantum key written on it.

The quantum key is not known to the user. Although, the key is written on
the card, the user does not need to know its qubit values. The qubits written on
the card are in different quantum states. Some states represent classical values,
such as |0〉 and |1〉. Other qubits are in a balanced superposition of |0〉 and
|1〉, namely 1√

2
(|0〉 + |1〉) = H |0〉 and 1√

2
(|0〉 − |1〉) = H |1〉. As the user does

not know which qubits are simple states and which are in a superposition, the
user cannot retrieve his/her dbAccess key by illicitly reading the card. Moreover,
reading the card destroys the quantum states of the qubits, as they collapse to
some classical value. Thus, a card that has been illicitly read, cannot be used
afterwards to connect to the database.

The quantum encryption is not unique. Each bit of dbAccessmay be quantum
encrypted in four different ways:

1. *: Copied directly with no change.
2. NOT: The bit is negated.
3. H: The bit is transformed with a Hadamard gate.
4. H NOT: The bit is negated and then transformed with a Hadamard gate.

Access Key Quantum Key Decryption Mask

0 1 H0 0 NOT ∗ H ∗
1100 H0 H1 0 1 (H NOT ) H ∗ NOT

H1 1 H0 H0 H ∗ H H
H0 1 H0 H1 (H NOT ) ∗ H (H NOT )

Table 1. There are 4n quantum keys that encrypt the same access key. The decryption
mask yields the reading strategy to obtain the access key.

If the access key is n bits long, there are 4n possible quantum keys that
encrypt the same dbAccess key. In table 1 the second column shows possible
encryptions of a short example-key dbAcces = 1100.

3.2 The Access Control Unit

To know how to retrieve the access key from the array of qubits of the quantum
key, we need to have a decryption mask. The decryption mask simply says how
to read the qubits of the quantum key in order to obtain the intended binary
value. It shows the positions in the qubit array of the quantum key that are in
superposition and/or negated. The third column of table 1 defines the decryption
masks for the quantum keys of the second column.
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Access Control Unit
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quantum key
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strategy011
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Quantum Reading Unit
database access

key

1 1 0 0

Fig. 8. How the database access key is obtained.

In order to manage the decryption of the quantum keys, there is a unit
attached to the database, called the access control unit, ACU (see Fig. 8). The
ACU translates the two user keys into the final database access key. The ACU
has a table that has entries for each user’s classical key. A decryption mask,
or reading strategy mask, corresponds to each classical key value. This reading
strategy mask is then submitted to the quantum reading unit. This unit is now
able to correctly read the quantum key. Simple qubits are read directly and
qubits in superposition are first transformed by a Hadamard gate. If necessary,
the bits are then negated. Thus, the output of the quantum reading unit is the
final database access key.

Note that the ACU is attached to the database. It is not visible to the user.
Once deployed, the ACU does not need to be managed by a human.

When a user accesses the database, the user has to type in the classical key
and also provide the quantum card for reading. Whenever the card is used, the
quantum key is destroyed by reading. Therefore, at the end of each session, the
card needs to be restored, meaning that the quantum key is written back to the
card. It is interesting to note, that the quantum key need not be the same. At
the end of the session, the ACU may generate a new, random reading mask, and
then write a new quantum key on the card. Thus, the user has a quantum key
per session.

3.3 Changes in the User Structure of the Organization

The clear advantage of this scheme is that the user is disconnected from the
database access key. The user has no knowledge of its value and no way of
retrieving information about it.
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Now the dbAccess key defines the access rights of the user as a member of
the poset. As dbAccess is hidden from the user, a hierarchical structure, as the
ones described in section 2, will serve the purpose. For example, the dbAccess
can be obtained by the up-down computable key method.

When a user joins an existing group, this means that the node of the poset
exists and is working. The particular access key of the group will be assigned to
the new user, using some arbitrary quantum encryption. A line is added to the
ACU’s table to represent the new user. In addition, a classical key will be given
to the user. This key is independent of the poset structure and is an index in the
ACU’s table. When a user leaves the organization, its line in the ACU table is
invalidated. Therefore, there is no entry in the ACU for this particular classical
key. The user can no longer access the ACU with the classical key. Normally, the
user would be required to return the quantum card, but this does not affect the
security of the system, as will be seen in the next subsection.

When a user changes its position in the hierarchy of the poset, its quantum
card needs to be updated to a quantum encryption of the new database access
key. The quantum card will reflect the change in the access rights. The classical
key may remain the same. Also, the ACU table needs to be updated with a new
decryption mask.

Note that all changes described above affect exactly one user, namely the
user whose status is changed. This is remarkable, compared to all previous clas-
sical solutions existing in the literature, as described in section 2. In our scheme,
a change in the status of an arbitrary user leaves all the rest of the users undis-
turbed. This is an important advantage, when considering large organizations
with millions of users and presumably a very dynamic structure.

The scheme designed is less adaptable to changes in the poset structure itself.
Adding another leaf to the poset, that is, creating a new group, should pose no
problems, as a new dbAccess can be created to define the node. This key would
be some common multiple of its parents. Yet, it might be difficult to insert a
node in some arbitrary position of the poset, as an appropriate dbAccess key
might not be available. Deleting a group of users is easy again, as it simply
means to stop using a certain database access key.

3.4 What the Intruder Can/Cannot Do

Let us consider first that the intruder has access to the property of the users
only, but cannot access the ACU, as it is stored in a secure place.

If the intruder, Eve, steals the classical key, she will have absolutely no access
to the system without the quantum card. In the same way, if Eve steals the
quantum card, but does not know the classical key, she cannot access the ACU.

Because of the nonclonability theorem, Eve cannot copy the quantum card.
If Eve tries to read the quantum card, she destroys the quantum key, and the
card will be unusable to the legitimate user as well. As Eve does not know
the decryption mask, there is no way of reading the quantum card and gaining
some knowledge about dbAccess. In fact, if Eve guesses a reading strategy, the
probability on each qubit to be measured correctly is still 50%.
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Therefore, Eve’s only option is to steal both the classical key and the quantum
card. Note that this is a complete identity theft. The legitimate user has lost
its quantum card. Yet, this theft is detectable, the legitimate user will know
that his/her identity has been stolen: the user cannot find his/her card . In this
case, the user’s identity has to be invalidated from the cryptographic system,
and a new identity has to be given to the user. Again, an aspect specific to this
quantum system is that an identity cannot be copied. It is not possible that two
persons carry the same cryptographic identity.

Let us consider now that Eve may gain access to the ACU. The ACU has
no dbAccess key stored into it. Just looking at the ACU’s table does not reveal
anything about the access key, as the access key is solely written on the quantum
card. Therefore, Eve has absolutely no gain from looking at the ACU, unless she
also has both a classical key and a quantum key. This means that Eve would
need to steal both the identity of a user and access the ACU in a very short
interval, which is practically difficult.

Also, two or more users cannot collaborate to break the system. They cannot
even gain knowledge about their own dbAccess. This is because their quantum
keys are different and have no meaningful connection to the value of dbAccess,
except through the decryption mask.

4 Conclusion

Our scheme shows that adding quantum keys to the access mechanism of a
database has advantages both in terms of security of the system and of adapt-
ability to changes in the underlying user structure.

The system cannot be broken easily, as the quantum key cannot be copied,
and in fact may be unique for the session. The identity of a user cannot be stolen
without the user noticing the theft.

Also the system is designed to support a large variety of changes in the
user structure. Users may join and leave the organization without affecting the
security system at large.

The idea of using two keys, a classical key and a quantum key, is not neces-
sarily connected to this specific application, namely access control in a hierarchy.
In fact, the access system behind the two-key front end, may have any struc-
ture. The idea may be successfully applied, whenever the user is to be distanced
from the actual security access of the sensitive data. In our scheme, the user is
distanced from the hierarchical structure of the users’ security rights. It is the
specific value of dbAccess for each user, which reflects the security rights. The
dbAccess keys of all users form the poset structure and are therefore considered
to be defined according to the up-down computable method.

The vulnerability of the database itself, or the ACU has not been treated in
this scheme. As a future work, we envision to store both the database and the
table of the ACU using quantum memories. This would allow the definition of
a security scheme for these data based on a quantum cryptographic approach.
For example, the database could be quantum encrypted.
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Abstract. Axiomatization of Physics (and Science in general) has many
drawbacks that are correctly criticized by opposing philosophical views
of Science. This paper shows that, by giving formal proofs a more promi-
nent role in the formalization, many of the drawbacks can be solved and
many of the opposing views are naturally conciliated. Moreover, this ap-
proach allows, by means of Proof Theory, to open new conceptual bridges
between the disciplines of Physics and Computer Science.
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1 Introduction

“Science is built up with facts, as a house is with stones.
But a collection of facts is no more a science

than a heap of stones is a house.”

- Poincaré

Foundational works on the formalization of Physics typically consider a phys-
ical theory as a collection of facts, i.e. as a set of sentences closed under logical
consequence. However, not as much attention has been given to studying how
these facts are or should be organized or, equivalently, how the physical theory is
or should be structured. Usually, the only structure considered is a distinction of
facts either as axioms or as derivable theorems (i.e. axiomatization). Although
simple, this approach has a few drawbacks.

Firstly, from an epistemological point of view, the mentioned approach suffers
from a logical omniscience problem: although physicists might know the axioms
of their theories, it is certainly not the case that they know all the logical conse-
quences of these axioms, simply because they have limited reasoning resources.
Therefore, the approach of defining a theory as a set of sentences closed un-
der logical consequence fails to capture the notion of theory as perceived by
resource-bounded physicists; it is just an idealized approximation.

Secondly, the selection of which facts should be taken as axioms is arbitrary
and frequently based on subjective criteria such as elegance. For example, there
are axiomatizations of physics that do not rely on the rather natural concepts of
space and time [18]. Should they be considered more elegant, useful or correct?
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And finally, there are cases of physical theories, such as Newtonian mechanics
and Lagrangean mechanics, that are considered equivalent to each other accord-
ing to the mentioned approach, because their sets of sentences closed under
logical equivalence are the same, even though they actually differ significantly
in how easily they can be used to solve certain classes of problems.

The second and third drawbacks mentioned above have been main reasons for
criticism on the whole enterprise of formalizing Science [20]. However, they actu-
ally only apply to (unstructured) axiomatization. As a response to the criticism,
there was a rise of semantic approaches, which adopted a more model-theoretic
approach to the formalization of Science [20]. Advances in the sibling discipline
of proof theory, on the other hand, have not been given much attention.

The main goal of this paper is to advocate in favor of a more prominent role
for proofs in the formalization of physics, and consequently, for proof theory in
approaches to Hilbert’s sixth problem [22] and in studies of the foundations of
physics. If a physical theory is considered not as a collection of sentences closed
under logical consequence, but rather as a collection of proofs, the above men-
tioned drawbacks are naturally solved. Non-idealized resource-bounded physi-
cists know only what they have proved so far. Axioms are simply the assumptions
of the proofs contained in the physical theory. And various physical theories can
be objectively compared with respect to the structure of the proofs they contain.
This proposal is in line with current work in the formalization of mathematics,
where mathematical knowledge is formalized as collections of proofs with the
assistance of interactive theorem provers3.

The use of proofs to formalize computations of solutions of physical problems
is exemplified with a simple problem of Newtonian mechanics in Section 3. The
proof calculus used, known as sequent calculus, is briefly explained in Section
2. Finally, Section 4 discusses the benefits and challenges of using proofs in the
formalization of Physics, from philosophical and computational points of view.

2 The Sequent Calculus LKP

The formal proofs in this paper are written in an extension of Gentzen’s sequent
calculus LK [11]. A sequent is a pair Γ ` ∆, where Γ (the antecedent) and ∆
(the succedent) are multisets of formulas, with the intuitive intended meaning
that the disjunction of the formulas in ∆ is provable assuming the formulas in Γ .
An LK-proof is a (hyper)tree of sequents, such that the leaves are axiom sequents
of the form F ` F , where F is an arbitrary formula, and the (hyper)edges are
instances of the inference rules specified by the calculus. The sequent calculus
LK has inference rules for propositional connectives (e.g. ∨, →, ¬ and ∧), as
exemplified below for the ∧ connective:

Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ,A ∧B ∧ : r

A, Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l1

A,Γ ` ∆
B ∧A,Γ ` ∆ ∧ : l2

3 Examples of proof assistants are Mizar (http://mizar.uwb.edu.pl/), Coq
(http://coq.inria.fr/) and Isabelle (http://www.cl.cam.ac.uk/research/hvg/Isabelle/).
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The following inference rules for quantifiers are also available (with the im-
portant restriction that the ∀ : r and ∃ : l rules must satisfy the eigenvariable
condition, i.e. the variable α must occur neither in Γ nor in ∆ nor in A):

A{x← t}, Γ ` ∆
(∀x)A,Γ ` ∆ ∀ : l

Γ ` ∆,A{x← α}
Γ ` ∆, (∀x)A

∀ : r

A{x← α}, Γ ` ∆
(∃x)A,Γ ` ∆ ∃ : l

Γ ` ∆,A{x← t}
Γ ` ∆, (∃x)A

∃ : r

Moreover, the sequent calculus LK also provides structural rules such as con-
traction, weakening and, most importantly, the cut rule, which, as discussed in
Section 4, eases the structured formalization of Physics:

Γ ` ∆,F F, Γ ` ∆
Γ ` ∆ cut

However, the pure sequent calculus LK does not provide any built-in support
for equality handling, arithmetical simplifications, and differentiation and inte-
gration. Therefore, formalizing physics in the pure sequent calculus LK would
be tedious and uncomfortable, since the lack of built-in support would require
adding several additional assumptions to the antecedents of the sequents, which
would render the proofs large, unreadable and difficult to construct. The sequent
calculus LKP addresses this issue by extending LK with the following rules:

– Built-in Support for Equality:

Γ, s = t, A[t] ` ∆
Γ, s = t, A[s] ` ∆

=l
Γ, s = t ` ∆,A[t]

Γ, s = t ` ∆,A[s]
=r

Γ, s = t, A[s] ` ∆
Γ, s = t, A[t] ` ∆

=l
Γ, s = t ` ∆,A[s]

Γ, s = t ` ∆,A[t]
=r

where s and t do not contain variables that are bound in A.
– Built-in Support for Definitions:4 They correspond directly to the ex-

tension principle and introduce new predicate and function symbols as ab-
breviations for formulas and terms. Let A[x1, . . . , xk] be an arbitrary for-
mula with free-variables x1, . . . , xk and P be a new k-ary predicate symbol
defined by P (x1, . . . , xk) ↔ A[x1, . . . , xk]. Let t[x1, . . . , xk] be an arbitrary
term with free-variables x1, . . . , xk and f be a new k-ary function symbol
defined by f(x1, . . . , xk) = t[x1, . . . , xk]. Then, for arbitrary sequences of
terms t1, . . . , tk, the rules are:

A[t1, . . . , tk], Γ ` ∆
P (t1, . . . , tk), Γ ` ∆ dl

Γ ` ∆,A[t1, . . . , tk]

Γ ` ∆,P (t1, . . . , tk)
dr

F [t[t1, . . . , tk]], Γ ` ∆
F [f(t1, . . . , tk)], Γ ` ∆ dl

Γ ` ∆,F [t[t1, . . . , tk]]

Γ ` ∆,F [f(t1, . . . , tk)]
dr

4 Definition rules have been succesfully used for formalization and analysis of math-
ematical proofs [3]. They are closely related to superdeduction rules [6], which can
provide even more concise, natural and readable formal proofs. However they are
not as simple to describe, and hence definition rules have been used in this paper.
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– Built-in Support for Simplification: let t (or t′) be obtainable from t′

(t) by algebraic or arithmetical simplifications5. Then the rules are:

F [t′], Γ ` ∆
F [t], Γ ` ∆

sl
Γ ` ∆,F [t′]

Γ ` ∆,F [t]
sr

– Built-in Support for Integration and Differentation:6 let t1 (t2) be a
term denoting the integral of the function denoted by t′1 (t′2) on the interval
(x1, x2). Then the rules are:

F [t′1 = t′2], Γ ` ∆
F [t1 = t2], Γ ` ∆

∫ x2

x1
: l

Γ ` ∆,F [t′1 = t′2]

Γ ` ∆,F [t1 = t2]

∫ x2

x1
: r

3 A Simple Example: Energy Conservation as a Cut

To solve problems of physics, certain invariants (such as energy) are frequently
used. This is so because solving problems by using a derived principle (such
as the principle of energy conservation) is usually easier than solving them by
using the most basic physical laws or axioms. This section intends to exemplify
how problem solution can generally be seen from a proof-theoretic perspective
in which the use of derived principles corresponds to an implicit use of the cut
rule. The following simple problem of Newtonian mechanics shall be considered:

An object of mass m is dropped from height h0 and with initial
velocity equal to zero. The only force acting on the object is the force of
gravity (with an intensity mg). What is the velocity of the object when
its height is equal to zero?

A typical solution (Solution 1) to this problem uses the principle of energy
conservation, as follows:

1. Let tf be the time when the object reaches height zero.
2. According to the principle of energy conservation, e(tf ) = e(0), i.e. the energy at

tf is equal to the initial energy.
3. Hence, by definition of gravitational potential energy in a uniform gravitational

field and by definition of kinetic energy, mgh(tf ) +m
ḣ(tf )

2

2
= mgh(0) +m ḣ(0)2

2
.

5 It is beyond the scope of this paper to define precisely the allowed simplifications.
This kind of rule is inspired by deduction modulo, whose precise definitions can be
found in [9]. In principle, simplification rules are not necessary, because they can
be simulated by equality rules together with the arithmetical and algebraic axioms
as additional assumptions in the antecedentes of the sequents. However, the goal
of simplification rules (and deduction modulo) is to hide uninteresting computa-
tional details of the underlying theories (e.g. arithmetics), in order to obtain concise
formal proofs that show only interesting information related to the theory under
investigation (e.g. newtonian mechanics).

6 Integration and Differentiation Rules have been inspired by emerging idea of inte-
grating computer algebra systems and automated theorem provers.
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4. According to the initial conditions, h(0) = h0 and ḣ(0) = 0. Moreover, by assump-

tion, h(tf ) = 0. Therefore, m
ḣ(tf )

2

2
= mgh0.

5. Hence, the result is ḣ(tf ) = −√2gh0.

Another solution (Solution 2) computes the velocity as a function of time
by integrating the acceleration produced by the gravitational force. Then it
determines the time when the object reaches height zero, and computes the
velocity at that time. The details are shown below:

1. According to Newton’s second law of motion, f(t) = mḧ(t) at any time t. Moreover,
the uniform gravitational field produces a force f(t) = −mg. Hence, ḧ(t) = −g.

2. By integration, ḣ(t) = −gt+ ḣ(0).
3. According to the initial conditions, ḣ(0) = 0, and hence ḣ(t) = −gt.
4. By integration again, h(t) = −g t2

2
+ h(0).

5. According to the initial conditions, h(0) = h0, and hence h(t) = −g t2

2
+ h0.

6. For h(tf ) = 0 to hold, it must be the case that tf =
√

2h0
g

.

7. Hence ḣ(tf ) = −g
√

2h0
g

, which can be simplified to ḣ(tf ) = −√2gh0.

Solution 2 is simpler in the sense that it uses only the basic physical laws of
motion (here assumed to be Newton’s laws of motion) and of uniform gravita-
tional fields. Solution 1, on the other hand, assumes that energy is conserved,
without actually proving it from Newton’s basic laws.

In order to view problem solving from a proof theoretic perspective, it is
necessary to formalize problem solving as theorem proving. In the example above,
the problem can be stated as the following theorem to be proved:

(∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Solving the given problem then consists of finding a proof of the theorem
above such that v is instantiated by a ground term. Interestingly, formalizing
the problem as a theorem to be proved enforces the explicit mention of the hidden
assumption that the height eventually becomes zero; otherwise the variable t′

would be free and the theorem would be open.
Traditionally, works of axiomatization have formalized physical laws as ax-

ioms that are supposed to be used as assumptions in proofs [20]. In a more mod-
ern proof-theoretical approach, however, definition rules often provide a more
convenient alternative. The axioms corresponding to certain physical laws can
be seen as defining new symbols. This is the case, for example, of Newton’s second
law, which states that force equals mass times acceleration (f(t) = mḧ(t)). It can
be seen as defining the function symbol f . Similarly, the equation for energy of a

single object in a uniform newtonian gravitational field (e(t) = mgh(t)+m ḣ(t)2

2 )
can be seen as defining the function symbol e.For convenience, the defined pred-
icate symbols below are also used in the following formal proofs:

Initial Conditions: I ↔ Init ↔ h(0) = h0 ∧ ḣ(0) = 0
Uniform Gravitation: G ↔ Gravity ↔ (∀t)(f(t) = −mg)
Fall of the Object: F ↔ Fall ↔ (∃t) h(t) = 0
Energy Conservation: EC ↔ EnergyConservation ↔ (∀ti)(∀tj) e(ti) = e(tj)
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Solution 1 can be easily formalized as the proof ϕ1 below (where ϕ′
1 is a

subproof consisting of the single axiom sequent h(tf ) = 0 ` h(tf ) = 0):

ϕ′1

ḣ(tf ) = −
√

2gh0 ` ḣ(tf ) = −
√

2gh0
∃r

ḣ(tf ) = −
√

2gh0 ` (∃v) ḣ(tf ) = v
sl

mg0 +m
ḣ(tf )2

2
= mgh0 +m 02

2
` (∃v) ḣ(tf ) = v

wl

h(tf ) = 0, h(0) = h0, ḣ(0) = 0,mg0 +m
ḣ(tf )2

2
= mgh0 +m 02

2
` (∃v) ḣ(tf ) = v

=l

h(tf ) = 0, h(0) = h0, ḣ(0) = 0,mgh(tf ) +m
ḣ(tf )2

2
= mgh(0) +m

ḣ(0)2

2
` (∃v) ḣ(tf ) = v

dl
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, e(tf ) = e(0) ` (∃v) ḣ(tf ) = v

∀l
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ` (∃v) ḣ(tf ) = v

∀l
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ` (∃v) ḣ(tf ) = v

∧r
h(tf ) = 0, h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ` h(tf ) = 0 ∧ (∃v) ḣ(tf ) = v

cl
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ` h(tf ) = 0 ∧ (∃v) ḣ(tf ) = v

∃r
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∃l
(∃t) h(t) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∧l
(∃t) h(t) = 0, h(0) = h0 ∧ ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

dl
Fall, Init, EnergyConservation ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Solution 2 can be formalized as the following proof ϕ2:

h

(√
2h0
g

)
= 0 ` h

(√
2h0
g

)
= 0

wl

h(0) = h0, h

(√
2h0
g

)
= 0 ` h

(√
2h0
g

)
= 0

ḣ

(√
2h0
g

)
= −

√
2gh0 ` ḣ

(√
2h0
g

)
= −

√
2gh0

∃r
ḣ

(√
2h0
g

)
= −

√
2gh0 ` (∃v) ḣ

(√
2h0
g

)
= v

sl

ḣ

(√
2h0
g

)
= −g

√
2h0
g
` (∃v) ḣ

(√
2h0
g

)
= v

∀l
(∀t)(ḣ(t) = −gt) ` (∃v) ḣ

(√
2h0
g

)
= v

wl
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As expected ϕ1 is not only smaller than ϕ2, but also simpler in the sense that
it does not use integration. Furthermore, while in ϕ2 the time when the object
hits the floor has to be computed explicitly (i.e. t′ is instantiated to a ground
term), in ϕ1 this is not so (i.e. t′ is instantiated to a variable).

Solution 1 implicitly uses cuts, because EnergyConservation and Fall are not
considered to be basic laws of physics. In principle, ϕ1 must be composed with a
proof ϕE of EnergyConservation and a proof ϕF of Fall . This is done with two
cuts, as shown in the following proof ϕ:

ϕF

Init,Gravity ` Fall

ϕE

Gravity ` EC

ϕP

Init,Fall,EC ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cut

Init,Gravity,Fall ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cut

Init, Init,Gravity,Gravity ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cl

Init,Gravity ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Where ϕF is the proof below, proving that the object will eventually fall to
height zero under the gravitational field and the initial conditions specified in
the description of the problem:
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h(0) = h0, ḣ(0) = 0, (∀t)(f(t) = −mg) ` (∃t′) h(t′) = 0 ∧l
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And ϕE is the proof that energy is conserved in a uniform gravitational field:
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4 Benefits and Challenges of a Proof-Theoretical
Approach to the Formalization of Physics

The following subsections are devoted to discussing what proof theory has to
offer to the formalization of Physics, with emphasis on computational and philo-
sophical aspects.

4.1 Cut-Introduction

The example discussed in the previous section illustrates that an essential task
of theoretical science is to invent or discover important concepts that are useful
to solve problems, such as the principle of energy conservation in newtonian me-
chanics. Nevertheless, in a traditional axiomatization approach, such principles
have no prominent role, because they are merely theorems derivable from the
axioms. In a more proof-theoretic approach, on the other hand, proofs allow a
structured formalization of the scientific knowledge, where important principles
like energy conservation appear prominently formalized as active formulas in
cut inferences, as shown in the formal proof ϕ of Section 3. Indeed, reduction-
ism in Science can generally be captured by the proof-theretical notion of cut.
Consequently, a significant part of the usual scientific activity can be formally
described as cut-introduction.

Cut-introduction also leads to the compression of proofs. Although the gen-
eral problem of finding the shortest proofs by means of cut-introduction is unde-
cidable [5], there are a few preliminary algorithms that introduce simple cuts [15,
10, 24], and it has been shown that some techniques of machine learning, such as
decision tree learning, can be seen as cut-introduction techniques from a proof-
theoretical point of view [23]. Therefore, a potential benefit of using proofs to
formalize Physics is the possibility of applying cut-introduction techniques in or-
der to automatically discover useful physical concepts. However, it must be noted
that current cut-introduction techniques are still not sophisticated enough to be
applied to formalized proofs of Physics.

4.2 Cut-Elimination

The problem of eliminating cuts from proofs is much easier than the problem of
introducing cuts and has been much more deeply investigated [11, 4]. By using
cut-elimination algorithms, it might be possible to automatically transform a
solution that uses a derived principle (i.e. a cut) such as energy conservation
(e.g. Solution 1 in Section 3) into a solution that uses only the basic laws of
a theory (e.g. Solution 2 in Section 3). This is advantageous in certain cases,
for in a cut-free proof it is easy, via Gentzen’s Midsequent Theorem [11] or
more general Herbrand sequent extraction algorithms [16], to extract a Herbrand
disjunction [12] that contains instances of the quantified variables of the problem.
For example, in the cut-free proof of Solution 2, the existentially quantified
variable for the time when the object reaches height zero is instantiated by a
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ground term that denotes exactly when this happens. In the proof with cuts that
formalizes Solution 1, on the other hand, it is instantiated by an eigenvariable,
and hence the time when the object reaches height zero is not known. Therefore,
cut-elimination could in principle be used as an algorithm that instantiates the
variables of a problem that were left unsolved. However, even though this idea
has been succesfully used in mathematics [14], the challenge in the case of Physics
is to make cut-elimination algorithms work with high-level calculi such as LKP.

4.3 Logic Programming

The idea of formalizing a problem as a theorem and in such a way that its solution
is in the instances used for the quantified variables in the proof is the fundamen-
tal principle behind the logic programming paradigm of computation, of which
Prolog [19] is the most prominent language. Therefore, the proof-theoretical ap-
proach to the formalization of Physics brings a new paradigm of computation
that might be the subject of studies from the point of view of Physics itself, as
imperative computation, which is modeled by Turing machines, has been.

4.4 Functional Programming and the Curry-Howard Isomorphism

The Curry-Howard isomorphism [8] states that there is a correspondence be-
tween proofs of the implicational fragment of intuitionistic logic and lambda
terms. A proof is essentially a functional program. Cut-elimination corresponds
to beta-reduction, which is the execution of the program. Cut-introduction cor-
responds to structuring of the program and possibly to code reuse. By extrap-
olating this isomorphism, theories of Physics formalized as collections of proofs
can be seen as collections of programs. This kind of computation, which is im-
plicit in the formalization of Physics, is yet another link between Physics and
computation that might be the target of future work.

4.5 Instrumentalism: Truth versus Usefulness

From an instrumental viewpoint, “the most important function of a theory is
not to organize or assert statements that are true or false but to furnish material
principles of inference that may be used in inferring one set of facts from an-
other”. This idea is supported by the proof-theoretical approach described here,
as shown in the formal proof ϕ2 in Section 3, where Newton’s law of motion was
not merely a statement; it was used as a principle of inference, in the form of a
definition inference rule. Instrumentalism also judges theories by how useful they
are in solving problems. The proof-theoretical approach naturally embraces this
criterium of usefulness, since solutions to problems can be formalized as proofs,
as shown by ϕ1 and ϕ2. And as the commitment to truth is not given up, it
conciliates two opposing positions in the philosophy of science.
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4.6 The Evolution of Theories

Another philosophical viewpoint that opposes axiomatization is that of Welt-
anschauungen analyses, according to which science ought to be viewed as “an on-
going social enterprise [and] epistemic understanding of scientific theories could
only be had by seeing the dynamics of theory development” [20]. “An ultimately
meaningful answer to the question ‘what is a scientific theory?’ cannot be given
in terms of the kinds of concepts considered earlier [axiomatization and seman-
tics]. An adequate and complete answer can be given only in terms of an explicit
and detailed consideration of both the producers and consumers of the theory.”
[21]. Proof theory conciliates formalization with this philosophical viewpoint in
the following way: by defining scientific theories as collections of proofs, they can
evolve by the addition of new proofs, and Kuhn’s major paradigm shifts can be
seen as major proof transformations (e.g. cut-elimination, cut-introduction and
addition of new definitions).

4.7 Algorithmic Information Theory

Algorithmic Information Theory (AIT) sees scientific theories as data com-
pressed in the form of programs. It provides a very simple, elegant and general
criterium to judge and compare theories: the smaller the program, the better
the theory. However, the proponents of AIT are currently making an unfortu-
nate choice of how to encode their data, and this causes the limitations of their
approach. Diagrams in [7] suggest that theories/programs should correspond to
axioms, and the execution of the program by a computer, regarded as an auto-
mated theorem prover, should output empirical data in the form of theorems.
Therefore, they essentially adhere to the traditional Hilbert-style axiomatization
approach, and hence they suffer the same drawbacks, which are nicely explained
from a computational point of view in [7]. Two of them can be summarized
as follows: in current AIT, computation time is ignored, because only program
size matters; and the theory/program’s language is static, implying that new
concepts can never emerge and the theory can never evolve.

Fortunately, proof theory can rescue AIT as well, and even provide further
insight. The idea is that AIT’s principle of program-size minimality should be
applied not to axioms (artificially encoded as programs) but rather to the proofs
that formalize a scientific theory. From a conceptual point of view, it is clear that
proof theory and AIT fit perfectly together, because proofs are already programs
according to the (extrapolated) Curry-Howard isomorphism. The computation
time that was previously ignored now appears explicitly as the length of proofs
[17] and theories can naturally evolve by the addition and transformation of
proofs in the collection, with new concepts emerging by the introduction of cuts
and definition inferences.

Another indication that AIT and proof theory fit well together is the natural
relation between cut-introduction and kolmogorov complexity [13]. The Kol-
mogorov complexity C(ψ) of a proof ψ can be defined as the size of the shortest
proof ψ′ that can be obtained by cut-introduction from ψ (and, conversely, such
that ψ can be reconstructed from ψ′ by cut-elimination).
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5 Conclusions

“It is unheard of to find a substantive example of a theory actually worked
out as a logical calculus in the writings of most philosophers of science. Much
handwaving is indulged in to demonstrate that this [. . . ] is simple in principle
and only a matter of tedious detail, but concrete evidence is seldom given.”
[21]. In Section 3, an example of problem solution in Newtonian mechanics has
been successfully worked out in a sequent calculus extended with sophisticated
simplification, integration and definition rules, inspired by recent advances in
Proof Theory. These extensions are the key to the small size and significantly
reduced amount of tedious detail in the obtained formal proofs.

Section 4 showed that this proof-theoretical approach successfully conciliates
and unifies various philosophical views of Science, such as formalism, instrumen-
talism and Weltanschauungen analyses. The essence of these achievements lies
in seeing scientific theories not just as collections of facts, as assumed by tradi-
tional axiomatization. Scientific theories ought to be formalized as collections of
proofs. The structure of scientific knowledge can be nicely formalized with cuts,
and much of the scientific activity can be formally described as proof generation
or proof transformation. The task of organizing knowledge, for example, can be
formally described as cut-introduction.

Moreover, cut-introduction potentially compresses proofs, which can also be
seen as programs according to the (extrapolated) Curry-Howard isomorphism.
This indicates a tight relation between cut-introduction and Kolmogorov com-
plexity, and thus the use of proofs clarifies, conceptually improves and solves
some limitations of the ideas of algorithmic information theory with respect to
the formalization of Science.

The proof-theoretical approach advocated here should be seen not as com-
peting against existing axiomatic and semantical approaches, but rather as com-
plementing them by enriching their formalizations with structure.

Future work should concentrate on applying these proof-theoretical ideas to
complement the formalization of more interesting physical theories, such as Rel-
ativity (e.g. [2]) and Quantum Mechanics (e.g. [1]); on improving proof assistants
and proof-theoretical techniques, such as cut-elimination and cut-introduction,
in order to support logical calculi at least as sophisticated as LKP; and on in-
vestigating the new links between Physics and Computation that are opened by
Proof Theory.
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Abstract. Some quantum cryptographic protocols can be implemented
with specially prepared chocolate balls, others protected by value indefi-
niteness cannot. Similarities and differences of cryptography with quanta
and chocolate are discussed. Motivated by these considerations it is pro-
posed to certify quantum random number generators and quantum cryp-
tographic protocols by value indefiniteness. This feature, which derives
itself from Bell- and Kochen-Specker type arguments, is only present in
systems with three or more mutually exclusive outcomes.

Keywords: Quantum Information, Quantum Cryptography, Singlet States,
Entanglement, Quantum Nonlocality

1 Quantum Resources for Cryptography

Quantum cryptography1 uses quantum resources to encode plain symbols form-
ing some message. Thereby, the security of the code against cryptanalytic attacks
to recover that message rests upon the validity of physics, giving new and direct
meaning to Landauer’s dictum [6] “information is physical.”

What exactly are those quantum resources on which quantum cryptography
is based upon? Consider, for a start, the following qualities of quantized systems:

(i) randomness of certain individual events, such as the occurrence of certain
measurement outcomes for states which are in a superposition of eigenstates
associated with eigenvalues corresponding to these outcomes;

(ii) complementarity, as proposed by Pauli, Heisenberg and Bohr;
(iii) value indefiniteness, as attested by Bell, Kochen & Specker and others (often,

this property is referred to as “contextuality”);
(iv) interference and quantum parallelism, allowing the co-representation of clas-

sically contradicting states of information by a coherent superposition thereof;

1 In view of the many superb presentations of quantum cryptography — to name but
a few, see Refs. [1, 2] and [3, Chapter 6] (or, alternatively, [4, Section 6.2]), as well as
[5, Section 12.6]; apologies to other authors for this incomplete, subjective collection
— we refrain from any extensive introduction.
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(v) entanglement of two or more particles, as pointed out by Schrödinger, such
that their state cannot be represented as the product of states of the isolated,
individual quanta, but is rather defined by the joint or relative properties of
the quanta involved.

The first quantum cryptographic protocols, such as the ones by Wiesner [7]
and Bennett & Brassard [8, 9], just require complementarity and random indi-
vidual outcomes. This might be perceived ambivalently as and advantage — by
being based upon only these two features — yet also as a disadvantage, since
they are not “protected” by Bell- or Kochen-Specker type value indefiniteness.

This article addresses two issues: a critical re-evaluation of quantum crypto-
graphic protocols in view of quantum value indefiniteness; as well as suggestions
to improve them to assure the best possible protection “our” [10, p. 866] present
quantum theory can afford. In doing so, a toy model will be introduced which
implements complementarity but still is value definite. Then it will be exempli-
fied how to do perform “quasi-classical” quantum-like cryptography with these
models. Finally, methods will be discussed which go beyond the quasi-classical
realm.

Even nowadays it is seldom acknowledged that, when it comes to value def-
initeness, there definitely is a difference between two- and three-dimensional
Hilbert space. This difference can probably be best explained in terms of (conju-
gate) bases: whereas different basis in two-dimensional Hilbert space are disjoint
and separated (they merely share the trivial origin), from three dimensions on-
wards, they may share common elements. It is this inter-connectedness of bases
and “frames” which supports both Gleason’s and the Kochen-Specker theorem.
This can, for instance, be used in derivations of the latter one in three dimen-
sions, which effectively amount to a succession of rotations of bases along one
of their elements (the original Kochen-Specker [11] proof uses 117 interlinked
bases), thereby creating new rotated bases, until the original base is reached.
Note that certain (even dense [12]) “dilutions” of bases break up the possibility
to interconnect, thus allowing value definiteness.

The importance of these arguments for physics is this: since in quantum me-
chanics the dimension of Hilbert space is determined by the number of mutually
exclusive outcomes, a necessary condition for a quantum system to be protected
by value indefiniteness thus is that the associated quantum system has at least
three mutually exclusive outcomes; two outcomes are insufficient for this purpose.
Of course, one could argue that systems with two outcomes are still protected
by complementarity.

2 Realizations of Quantum Cryptographic Protocols

Let us, for the sake of demonstration, discuss a concrete “toy” system which
features complementarity but (not) value (in)definiteness. It is based on the
partitions of a set. Suppose the set is given by S = {1, 2, 3, 4}, and consider two
of its equipartitions A = {{1, 2}, {3, 4}} and B = {{1, 3}, {2, 4}}, as well as the
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usual set theoretic operations (intersection, union and complement) and the sub-
set relation among the elements of these two partitions. Then A and B generate
two Boolean algebras LA = {∅, {1, 2}, {3, 4}, S} and LB = {∅, {1, 3}, {2, 4}, S}
which are equivalent to 22; with two atoms a1 = {1, 2} & a2 = {3, 4}, as
well as b1 = {1, 3} & b2 = {2, 4} per algebra, respectively. Then, the parti-
tion logic LA ⊕ LB = LA,B = 〈{LA, LB},∩,∪,′ ,⊂〉 is obtained as a pasting
construction from LA and LB : only elements contribute which are in LA, or
in LB , or in both LA ∩ LB of them (the atoms of this algebra being the ele-
ments a1, . . . , b2), and all common elements — in this case only the smallest
and greatest elements ∅ and S — are identified. LA,B “inherits” the operations
and relations of its subalgebras (also called blocks or contexts) LA and LB . This
pasting construction yields a nondistributive and thus nonboolean, orthocomple-
mented propositional structure. Nondistributivity can quite easily be proven, as
a1∧(b1∨b2) 6= (a1∧b1)∨(a1∧b2), since b1∨b2 = S, whereas a1∧b1 = a1∧b2 = ∅.
Note that, although a1, . . . , b2 are compositions of elements of S, not all elements
of the power set 2S ≡ 24 of S, such as {1} or {1, 2, 3}, are contained in LA,B .

Figure 1(a) depicts a Greechie (orthogonality) diagram of LA,B , which rep-
resents elements in a Boolean algebra as single smooth curves; in this case there
are just two atoms (least elements above ∅) per subalgebra; and both subalgebras
are not interconnected.

a1 = a′
2 a2 = a′

1 b2 = b1 b1 = b′2

LA LB

6

-

�I

a1 = a′
2

a2 = a′
1

b2 = b1b1 = b′2

(a) (b)

Fig. 1. (Color online) (a) Greechie diagram of LA,B , consisting of two separate Boolean
subalgebras LA and LB ; (b) two-dimensional configuration of spin- 1

2
state measure-

ments along two noncollinear directions. As there are only two mutually exclusive
outcomes, the dimension of the Hilbert space is two.

Several realizations of this partition logic exist; among them

(i) the propositional structure [13, 14] of spin state measurements of a spin- 12
particle along two noncollinear directions, or of the linear polarization of a
photon along two nonorthogonal, noncollinear directions. A two-dimensional
Hilbert space representation of this configuration is depicted in Figure 1(b).
Thereby, the choice of the measurement direction decides which one of the
two complementary spin state observables is measured;

(ii) generalized urn models [15, 16]; in particular ones with black balls painted
with two symbols having two possible values (say, “0 and “1) in two colors
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(say, “red” and “green”), resulting in four types of balls — more explicitly,

carrying all variation of the symbols 00 , 01 , 10 , as well as 11 — many
copies of which are randomly distributed in an urn. Suppose the experimenter
looks at them with one of two differently colored eyeglasses, each one ideally
matching the colors of only one of the symbols, such that only light in this
wave length passes through. Thereby, the choice of the color decides which
one of the two complementary observables associated with “red” and “green”
is measured. Propositions refers to the possible ball types drawn from the
urn, given the information printed in the chosen color.

(iii) initial state identification problem for deterministic finite (Moore or Mealy)
automata in an unknown initial state [17, 18]; in particular ones 〈S, I,O, δ, λ〉
with four internal states S = {1, 2, 3, 4}, two input and two output states
I = O = {0, 1}, an “irreversible” (all-to-one) transition function δ(s, i) = 1
for all s ∈ S, i ∈ I, and an output function “modelling” the state partitions
by λ(1, 0) = λ(2, 0) = 0, λ(3, 0) = λ(4, 0) = 1, λ(1, 1) = λ(3, 1) = 0,
λ(2, 1) = λ(4, 1) = 1. Thereby, the choice of the input symbol decides which
one of the two complementary observables is measured.

Let us, for the moment, consider generalized urn models, because they allow
a “pleasant” representation as chocolate balls coated in black foils and painted

with color symbols. With the four types of chocolate balls 00 , 01 , 10 , and

11 drawn from an urn it is possible to execute the 1984 Bennett-Brassard
(BB84) protocol [8, 9] and “generate” a secret key shared by two parties [19].
Formally, this reflects (i) the random draw of balls from an urn, as well as (ii)
the complementarity modeled via the color painting and the colored eyeglasses.
It also reflects the possibility to embed this model into a bigger Boolean (and
thus classical) algebra 24 by “taking off the eyeglasses” and looking at both
symbols of those four balls types simultaneously. The atoms of this Boolean

algebra are just the ball types, associated with the four cases 00 , 01 , 10 , and

11 . The possibility of a classical embedding is also reflected in a “sufficient”
number (i.e., by a separating, full set) of two-valued, dispersionless states P (a1)+
P (a2) = P (b1) + P (b2) = 1, with P (x) ∈ {0, 1}. These two-valued states can
also be interpreted as logical truth assignments, irrespective of whether or not
the observables have been (co-)measured.

The possibility to ascribe certain “ontic states” interpretable as observer-
independent “omniscient elements of physical reality” (in the sense of Einstein,
Podolsky and Rosen [20, p. 777], a paper which amazingly contains not a single
reference) even for complementarity observables may raise some skepticism or
even outright rejection, since that is not how quantum mechanics is known to
perform “at its most mind-boggling mode.” Indeed, so far, the rant presented
merely attempted to convince the reader that one can have complementarity
as well as value definiteness; i.e., complementarity is not sufficient for value
indefiniteness in the sense of the Bell- and Kochen-Specker argument.
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Unfortunately, the two-dimensionality of the associated Hilbert space is also a
feature plaguing present random number generators based on beam splitters [21–
24]. In this respect, most of the present random number generators using beam
splitters are protected only by the randomness of single outcomes as well as by
complementarity, but are not by certified value indefiniteness, as guaranteed by
quantum theory in its standard form [25]. Their methodology should also be
improved by the methods discussed below.

3 Supporting Cryptography with Value Indefiniteness

Alas, quantum mechanics is more resourceful and mind-boggling than that, as it
does not permit any two-valued states which may be ontologically interpretable
as elements of physical reality. So we have to go further, reminding ourselves
that value indefiniteness comes about only for Hilbert spaces of dimensions three
and higher. There are several ways of doing this. The following options will be
discussed:

(i) the known protocols can be generalized to three or more outcomes [26];
(ii) entangled pairs of particles [27] associated with statistical value indefinite-

ness may be considered;
(iii) full, nonprobabilistic value indefiniteness may be attempted, at least coun-

terfactually.

3.1 Generalizations to three and more outcomes

In constructing quantum random number generators via beam splitters which
ultimately are used in cryptographic setups, it is important (i) to have full control
of the particle source, and (ii) to use beam splitters with three or more output
ports, associated with three- or higher-dimensional Hilbert spaces. Thereby, it
is not sufficient to compose a multiport beam splitter by a succession of phase
shifters and beam splitters with two output ports [28, 29], based on elementary
decompositions of the unitary group [30].

Dichotomic sequences could be obtained from sequences containing more
than two symbols by discarding all other symbols from that sequence [31], or
by identifying the additional symbols with one (or both) of the two symbols.
For standard normalization procedures and their issues, the reader is referred to
Refs. [32–37].

One concrete realization would be a spin- 32 particle. Suppose it is prepared in
one of its four spin states, say the one associated with angular momentum + 3

2 h̄
in some arbitrary but definite direction; e.g., by a Stern-Gerlach device. Then,
its spin state is again measured along a perpendicular direction; e.g., by another,
differently oriented, Stern-Gerlach device. Two of the output ports, say the ones
corresponding to positive angular momentum + 3

2 h̄ and + 1
2 h̄, are identified with

the symbol “0,” the other two ports with the symbol “1.” In that way, a random
sequence is obtained from quantum coin tosses which can be ensured to operate
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under the conditions of value indefiniteness in the sense of the Kochen-Specker
theorem. Of course, this protocol can also be used to generate random sequences
containing four symbols (one symbol per detector).

With respect to the use of beam splitters, the reader is kindly reminded of
another issue related to the fact that beam splitters are reversible devices capa-
ble of only translating an incoming signal into an outgoing signal in a one-to-one
manner. The “nondestructive” action of a beam splitter could also be demon-
strated by “reconstructing” the original signal through a “reversed” identical
beam splitter in a Mach-Zehnder interferometer [38]. In this sense, the signal
leaving the output ports of a beam splitter is “as good” for cryptographic pur-
poses as the one entering the device. This fact relegates considerations of the
quality of quantum randomness to the quality of the source. Every care should
thus be taken in preparing the source to assure that the state entering the in-
put port (i) either is pure and could subsequently be used for measurements
corresponding to conjugate bases, (ii) or is maximally mixed, resulting in a rep-
resentation of its state in finite dimensions proportional to the unit matrix.

3.2 Configurations with statistical value indefiniteness

Protocols like the Ekert protocol [27] utilize two entangled two-state parti-
cles for a generation of a random key shared by two parties. The particular
Einstein-Podolsky-Rosen configuration [20] and the singlet Bell state communi-
cated among the parties guarantee stronger-than-classical correlations of their
sequences, resulting in a violation of Bell-type inequalities obeyed by classical
probabilities.

Although criticized [39] on the grounds that the Ekert protocol in certain
cryptanalytic aspects is equivalent to existing ones (see Ref. [40] for a recon-
ciliation), it offers additional security in the light of quantum value indefinite-
ness, as it suggests to probe the nonclassical parts of quantum statistics. This
can best be understood in terms of the impossibility to generate co-existing ta-
bles of all — even the counterfactually possible — measurement outcomes of
the quantum observables used [41]. This, of course, can only happen for the
four-dimensional Hilbert space configuration proposed by Ekert, and not for
effectively two-dimensional ones of previous proposals. As a result, the Eckert
protocol cannot be performed with chocolate balls. Formally, this is due to the
nonexistence of two-valued states in four-dimensional Hilbert space.

Suppose one would nevertheless attempt to “mimic” the Ekert protocol with

a classical “singlet” state which uses compositions of two balls of the form 00 —

11 / 01 — 10 / 10 — 01 / 11 — 00 , with strictly different (alternatively
strictly identical) particle types. The resulting probabilities and expectations
would obey the classical Clauser-Horne-Shimony-Holt bounds [42]. This is due to
the fact that generalized urn models have quasi-classical probability distributions
which can be represented as convex combinations of the full set of separable two-
valued states on their observables.
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3.3 Nonprobabilistic value indefiniteness

In an attempt to fully utilize quantum value indefiniteness, we propose a gener-
alization of the BB84 protocol on a propositional structure which does not allow
any two-valued state. In principle, this could be any kind of finite configuration
of observables in three- and higher-dimensional Hilbert space; in particular ones
which have been proposed for a proof of the Kochen-Specker theorem.

For the sake of a concrete example, we shall consider the tightly interlinked
collection of observables in four-dimensional Hilbert space presented by Cabello,
Estebaranz and Garćıa-Alcaine [43, 44], which is depicted in Figure 2. Instead
of two measurement bases of two-dimensional Hilbert space used in the BB84
protocol, nine such bases of four-dimensional Hilbert space, corresponding to the
nine smooth (unbroken) orthogonal curves in Fig. 2 are used. In what follows,
it is assumed that any kind of random decision has been prepared according to
the protocol for generating random sequences sketched above.

(i) In the first step, “Alice” randomly picks an arbitrary basis from the nine
available ones, and sends a random state to “Bob.”

(ii) In the second step, Bob independently from Alice, picks another basis at
random, and measures the particle received from Alice.

(iii) In the third step, Alice and Bob compare their bases over a public channel,
and keep only those events which were recorded either in a common basis,
or in an observable interlinking two different bases.

(iv) Both then exchange some of the remaining matching outcomes over a public
channel to assure that nobody has attended their quantum channel.

(v) Bob and Alice encode the four outcomes by four or less different symbols. As
a result, Bob and Alice share a common random key certified by quantum
value indefiniteness.

The advantage of this protocol resides in the fact that is does not allow
its realization by any partition of a set, or any kind of colored chocolate balls.
Because if it did, any such coloring could be used to generate “classical” two-
valued states, which in turn may be used towards a classical re-interpretation of
the quantum observables; an option ruled out by the Kochen-Specker theorem.

Readers not totally convinced at this point might, for the sake of demon-
stration, consider a generalized urn model with nine colors, associated with the
nine bases in Figure 2. Suppose further that there is a uniform set of symbols,
say {0, 1, 2, 3} for all four colors. If all varieties (permutations) contribute, the
number of different types of balls should be 49. Note, however, that every inter-
linked color must have identical (or at least unique “partner”) symbols in the
interlinking colors; a condition which cannot be satisfied “globally” for all the
interlinks in Figure 2.

A simplified version of the protocol, which is based on a subdiagram of Fig-
ure 2, contains only three contexts, which are closely interlinked. The structure of
observables is depicted in Figure 3(a). The vectors represent observables in four-
dimensional Hilbert space in their usual interpretation as projectors generating
the one-dimensional subspaces spanned by them. In addition to this quantum
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(0, 1,−1, 0)

(0, 0, 1,−1)

(1, 0, 0, 1)

(1,−1, 0, 0)

(−1, 1, 1, 1)

(1, 1, 1, 1)

(1, 1, 1,−1)

(1, 1,−1,−1)

(1, 1,−1, 1)(0, 1, 1, 0)

(1,−1, 1,−1)(0, 0, 1, 1)

(1, 0, 1, 0)(0, 0, 0, 1)

(1, 0,−1, 0)(0, 1, 0, 0)

(0, 1, 0,−1)(1, 0, 0, 0)

Fig. 2. (Color online) Greechie orthogonality diagram of a “short” proof [43, 44] of the
Kochen-Specker theorem in four dimensions containing 24 propositions in 24 tightly
interlinked contexts [45]. The graph cannot be colored by the two colors red (associated
with truth) and green (associated with falsity) such that every context contains exactly
one red and three green points. For the sake of a proof, consider just the six outer lines
and the three outer ellipses. Then in a table containing the points of the contexts as
columns and the enumeration of contexts as rows, every red point occurs in exactly
two contexts, and there should be an even number of red points. On the other hand,
there are nine contexts involved; thus by the rules it follows that there should be an
odd number (nine) of red points in this table (exactly one per context).
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(1, 0, 0, 0) (0, 1, 1, 0) (0, 1,−1, 0) (0, 0, 0, 1)

(0, 1, 0, 0)

(1, 0,−1, 0)

(1, 0, 1, 0)

(0, 0,−1, 1)

(0, 0, 1, 1)

(1, 0, 0) (0, 1, 1) (0, 1,−1)

(0, 1, 0)

(0, 0, 1)

(a) (b)

Fig. 3. (Color online) Subdiagrams of Figure 2 allowing (value definite) chocolate ball
realizations.

mechanical representation, and in contrast to the Kochen-Specker configuration
in Figure 2, this global collection of observables still allows for value definiteness,
as there are “enough” two valued states permitting the formation of a partition
logic and thus a chocolate ball realization; e.g.,

{{{1, 2}, {3, 4, 5, 6, 7}, {8, 9, 10, 11, 12}, {13, 14}},
{{1, 4, 5, 9, 10}, {2, 6, 7, 11, 12}, {3, 8}, {13, 14}},
{{1, 2}, {3, 8}, {4, 6, 9, 11, 13}, {5, 7, 10, 12, 14}}}.

The three partitions of the set {1, 2, . . . , 14} have been obtained by indexing the
atoms in terms of all the nonvanishing two-valued states on them [18, 46], as
depicted in Figure 4. They can be straightforwardly applied for a chocolate ball
configuration with three colors (say green, red and blue) and four symbols (say
0, 1, 2, and 3). The 14 ball types corresponding to the 14 different two-valued

measures are as follows: 000 , 010 , 121 , 102 , 103 , 112 , 113 , 221 ,

202 , 203 , 212 , 213 , 332 , and 333 .

Figure 3(b) contains a three-dimensional subconfiguration with two comple-
mentary contexts interlinked in a single observable. It again has a value definite
representation in terms of partitions of a set, and thus again a chocolate ball

realization with three symbols in two colors; e.g., 00 , 11 , 12 , 21 , and 22 .
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4

8

13

4

9 14

Fig. 4. Two-valued states interpretable as global truth functions of the observables
depicted in Figure 3(a). Encircled numbers count the states, smaller numbers label the
observables.
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4 Noncommutative Cryptography Which cannot be
Realized Quantum Mechanically

Quantum mechanics does not allow a “triangular” structure of observables simi-
lar to the one depicted in Fig. 3 with three instead of four atoms per block (con-
text), since no geometric configuration of tripods exist in three-dimensional vec-
tor space which would satisfy this scheme. (For a different propositional structure
not satisfiable by quantum mechanics, see Specker’s programmatic article [47]
from 1960.) It contains six atoms 1, . . . , 6 in the blocks 1–2–3, 3–4–5, 5–6–1. In
order to obtain a partition logic on which the chocolate ball model can be based,
the four two-valued states are enumerated and depicted in Figure 5.

1

4

1

3

6

2

2

5

3

2

6 4

4

Fig. 5. Two-valued states on triangular propositional structure with three atoms per
context or block.

The associated partition logic is given by

{{{1}, {2}, {3, 4}},
{{1, 4}, {2}, {3}},
{{1}, {2, 4}, {3}}}.

Every one of the three partitions of the set {1, . . . , 4} of ball types labelled by 1
through 4 corresponds to a color; and there are three symbols per colors. For the
first (second/third) partition, the propositions associated with these protocols
are:

– “when seen through light of the first (second/third) color (e.g., pink/light
blue/yellow), symbol “0” means ball type number 1 (2/3);”

– “when seen through light of the first (second/third) color (e.g., pink/light
blue/yellow), symbol “1” means ball type number 3 or 4 (1 or 4/2 or 4);”

– “when seen through light of the first (second/third) color (e.g., pink/light
blue/yellow), symbol “2” means ball type number 2 (3/1).”

More explicitly, there are four ball types of the form 012 , 201 , 120 , and

111 . The resulting propositional structure is depicted in Fig. 6. With respect
to realizability, cryptographic protocols — such as the one sketched above —
based on this structure are “stranger than quantum mechanical” ones.
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{1} {3, 4} {2}

{3}

{1, 4}{2, 4}

Fig. 6. (Color online) Propositional structure allowing (value definite) chocolate ball
realizations with three atoms per context or block which does not allow a quantum
analog.

5 Summary and Discussion

It has been argued that value indefiniteness should be used as a quantum re-
source against cryptanalytic attacks, as complementarity may not be a sufficient
resource for the type of “objective” security envisaged by quantum cryptogra-
phy. A necessary condition for this quantum resource is the presence of at least
three mutually exclusive outcomes.

It may be objected that quantum complementarity suffices as resource against
cryptanalytic attacks, and thus the original BB84 protocol needs not be amended.
To this criticism I respond with a performance of the original BB84 protocols
with chocolate balls [19]; or more formally, by stating that configurations with
just two outcomes leave open the possibility of a quasi-classical explanation, as
they cannot rule out the existence of sufficiently many two-valued states in or-
der to construct homeomorphisms, i.e., structure-preserving maps between the
quantum and classical observables. Thus, when it comes to fully “harvesting”
the quantum, it appears prudent to utilize value indefiniteness, one of its most
“mind-boggling” features encountered if one assumes the existence of nonoper-
ational yet counterfactual observables.
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Abstract. Multilattices are a suitable generalization of lattices which
enables to accommodate the formalization of non-deterministic computa-
tion; specifically, the algebraic characterization for multilattices provides
a formal framework to develop tools in several fields of computer science.
On the other hand, the usefulness of coalgebra theory has been increas-
ing in the recent years, and its importance is undeniable. In this work,
we define a new kind of coalgebras (the ND-coalgebras) that allows to
formalize non-determinism, and show that several concepts, widely used
in computer science are, indeed, ND-coalgebras. Within this formal con-
text, we study a minimal set of properties which provides a coalgebraic
definition of multilattices.

1 Introduction

The notion of multilattice was introduced by Benado [1], as an extension of
the concept of lattice by means of multi-suprema (minimal upper bounds) and
multi-infima (maximal lower bounds).

Although its original motivation was purely theoretical, multilattices (and
relatives such as multisemilattices) have been identified in several disparate re-
search areas: (1) in the field of automated deduction, specifically when devising
a theory about implicates and implicants for certain temporal logics during the
development of automated theorem provers for those logics [2]; (2) unification
for logical systems, whose starting point was the existence of a most general
unifier for any unifiable formula in Boolean logic: in 1999, Ghilardi [4] proved
that there are no most general unifiers in intuitionistic propositional calculus
but instead there is a finite set of maximal general unifiers.

The first applicable algebraic characterization is relatively recent [6], and
it reflects much better the corresponding classical theory about lattices than
those given previously. Since then, several works have been published about the
mathematical theory of multilattices and, in general, about hyperstructures and
non-deterministic structures [3]. It is convenient to state that, in the meantime,
several other generalizations of the notion of lattice have been developed so far:
for instance, nearlattices, hyperlattices, or superlattices.

? Partially supported by Spanish Science Ministry project TIN09-14562-C05-01 and
Junta de Andalućıa project P09-FQM-5233.
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We are focusing our attention on multilattices since we believe their com-
putational properties are better suited to the aims stated as follows: The idea
underlying the algebraic study of multilattices is the development of a new theory
involving non-deterministic operators as a framework for formalizing key notions
in computer science and artificial intelligence. For instance, non-determinism has
been considered considered under the combination of modal and temporal logics
to be used in communication systems; new results have been recently obtained
in database theory as well. A lot of effort is being put in this area, as one can
still see recent works dealing with non-determinism both from the theoretical
and from the practical point of view [5, 7].

This work is concerned with coalgebras as well. Rutten developed the theory
of coalgebras which can be seen as a sort of dualization of universal algebra,
when considered from a category-theoretical standpoint. This theory is becom-
ing an ideal framework for formalization in diverse branches of computer science.
Specifically, concepts as important as Kripke structures, labeled transition sys-
tems, various types of automata (in particular, non-deterministic automata),
reactive systems, causal maps, ambient calculus, services and contracts, have a
coalgebraic explanation.

Certain abstract structures can be thought of both algebraically and coalge-
braically. The context and the aims of the work usually indicates which frame-
work one should consider; for instance, when non-deterministic behavior is as-
sumed, the coalgebraic framework is generally preferred because it appears to
fit more naturally. Following this trend, we started a research line consisting in
developing a coalgebraic view of several mathematical structures of interest for
the handling of non-determinism, in particular, for multilattices.

A typical example of coalgebra is the non-deterministic automaton in which,
in its simplest version, we have a set of states S and a transition function between
states S → P(S). Now, let us consider that such an automaton corresponds to
an agent within a multiagent framework containing n + 1 agents interacting.
Each agent changes its state depending on its own state and the state of the
rest of the agents. Thus, the transition function between states would be of type
Sn+1 → P(S). However, the agent knows its own state whereas the rest of states
have to be consulted, in such a way that the transition function can be considered
of type S → P(S)S

n

. As a result, the properties of the transition function can be
separated into two levels: those known to the agent, and those to be consulted.
Note that the transformation from Sn+1 → P(S) to S → P(S)S

n

is just an
instance of the currying process (or partial application), which transforms a
function that takes a tuple of arguments in such a way that it can be called as
a chain of functions each with a single argument.

Following the trend of developing a coalgebraic approach for several non-
deterministic structures, we have defined a suitable class of coalgebras, the ND-
coalgebras, and developed a thorough analysis of the required properties in order
to achieve a convenient coalgebraic characterization of multilattices which com-
plements the algebraic one given in [2].
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The class of ND-coalgebras can be regarded as a collection of coalgebras un-
derlying non-deterministic situations, and creates a setting in which many other
structures could be suitably described. A possible issue to be tackled in the future
might be the coalgebraic explanation of a more general type of multisemilattices
and multilattices which were thoroughly studied in [6]. For this purpose, it would
be necessary to extend the definitions and properties introduced for binary and
doubly binary ND-coalgebras.
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Abstract. The threshold theorem states that quantum computations
can scale robustly in the presence of certain types of noise processes
(e.g., Markovian) as long as the probability of error for each physical
component remains below a critical threshold. To satisfy this threshold
a theoretical circuit requiring O(s) idealized noiseless gates can be im-
plemented with O(s polylog s) gates to maintain an error rate that is
constant with increasing s. In this paper, we argue that maintaining a
fixed error rate is necessary but not sufficient to preserve complexity re-
sults obtained under an assumption of noiseless gates. Specifically, we
show that nontrivial quantum algorithms exhibit nonlinear sensitivity to
any circuit error and that this sensitivity affects algorithmic complexity.
The joint effects of circuit error and quantum-algorithmic iteration are
examined for the case of quantum search, and more complete complexity
results are derived.

Keywords: Quantum Computing, Quantum Error Correction, Fault
Tolerant Quantum Computation, Threshold Theorem, Quantum Com-
plexity

1 Introduction

Fault tolerant quantum computation relies on quantum error correction (QEC)
to control the error probability associated with each computational component.
This entails the use of a multi-qubit state to encode each logical qubit in a
quantum register and the application of fault tolerant logical gates to operate
on the register [1, 2]. This use of information and gate redundancy can reduce
the expected average gate-error probability from p to O(cp2), where c represents
the total number of points where a failure may occur. It can be shown that for
h layers with QEC the total probability of error is:

ε ≡ (cp)
2h

c
. (1)

Thus to enforce ε < p requires p < 1/c. In other words, as long as the probability
of error of a single physical component is below a certain value pth ≡ 1/c, it is
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possible to bound the overall error of the circuit to satisfy a given error threshold.
This is referred to as the threshold theorem [3–9].

Suppose now that we have a quantum algorithm which requires a circuit
consisting of s noiseless gates. The threshold theorem states that if the proba-
bility of error of each of the s gates3 in the circuit is kept smaller than a certain
threshold then the error associated with the output from the overall circuit can
also be kept below a given threshold. In other words, a circuit of noisless gates
can be simulated with a larger circuit of noisy gates with an error rate r that
can be made to satisfy 0 < r < t for an arbitrarily small threshold t.

If we wish to achieve a final accuracy of ε̃ in the simulation of this circuit
then we require that:

(cp)
2h

c
≤ ε̃

s
(2)

From this equation one can derive the upper bound on h̃o necessary to achieve
the desired algorithmic accuracy ε̃:

h̃o ≈ log

(
log(s/cε̃)

log(1/pc)

)
(3)

It is also possible to show that the size of the noisy circuit grows as dh, where
d is a constant that represents the maximum number operations used in a fault
tolerant procedure for a single logical gate. Thus, the circuit complexity scales
as:

O(s) −→ O(s× dh̃) = O
(
s×

(
log(s/cε̃)

log(1/pc)

)log d
)

(4)

where

dh̃ =
(
2log d

)h̃
=
(

2h̃ log d
)

=
(

2h̃
)log d

(5)

With p, c, and d as constants we obtain the following:

O (s× logr(s/ε̃)) (6)

where:
r ≡ log d (7)

Therefore, under the conditions of the threshold theorem, a fault tolerant quan-
tum circuit incurs only a poly-logarithmic overhead factor on the number of
noisy gates.

At this point it is important to consider what the threshold theorem implies
and does not imply. It ensures that an ideal circuit of s noiseless gates can be
simulated by circuit of noisy gates that is only larger by a polylogarithmic factor

3 The error models considered in the literature treat the gates as the only possible
points of failure so that c = s, e.g., instead of c = O(2s) in which larger subsets of
gates may jointly contribute to a fault. We will accept c = s as an assumption for
the analysis in this paper without any comment on its reasonableness.
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and has an error rate that is less than any desired nonzero threshold. Therefore
quantum circuits can be said to scale efficiently with bounded error. However, the
threshold theorem does not necessarily imply that a given quantum algorithm on
a simulated circuit will have the same complexity as is possible on an idealized
noiseless circuit. This is because the algorithm may be superlinearly sensitive to
noise, so any nonzero threshold may be insufficient to preserve the algorithm’s
complexity on a noiseless circuit.

In this paper we argue that the circuit error threshold has a functional depen-
dency on the algorithm’s sensitivity to noise. In sections 2, we review some basic
concepts of complexity theory and algorithmic accuracy. In section 3 we conduct
algorithmic analysis for the case of a noisy circuit with an uncorrected error
probability ε. We show that uncorrected constant errors may affect algorithmic
complexity even if they are arbitrarily small. As a consequence, these errors
may alter complexity classifications. In section 4 we demonstrate that bounded
– though nonzero – error affects the complexity of amplitude amplification, e.g.,
as applied in Grover’s algorithm for quantum search. In section 5 we explain why
the complexities of classical search algorithms are not affected by bounded-error
gates. And in section 6 we discuss our results present our conclusions.

2 Probability Amplification

A typical quantum algorithm produces an output with a known probability of
being correct. If the scaling parameters are fixed, the probability that the output
is correct is a constant. This constant can be made to satisfy a given threshold
t simply by repeating the algorithm a number of times until the probability of
not finding the correct answer falls below 1− t.

For example, consider the case of a quantum algorithm with a binary output:
↑ is the correct outcome and ↓ is the incorrect outcome with the probability of
getting either output is exactly 1/2. After the algorithm completes, we check if
the outcome is correct or not, a process which we presume can be accomplished
in constant time. After we run the algorithm once, the probability that we will
obtain the right answer is 1/2. But if we run the algorithm twice, then we will
obtain the right answer in 3 out of the 4 possible outcomes (↑↑, ↑↓, and ↓↑),
and we will not get the right answer in 1 out of the 4 possible outcomes (↓↓).
In other words, the probability that we get an incorrect answer in both runs is
( 1
2 )2 = 1

4 . Similarly, the probability of getting an incorrect answer for each of
three runs is ( 1

2 )3 = 1
8 , so the probability of finding the correct answer is 7/8.

In general, if the probability of algorithmic error is ε̃, then after k experiments
we have a probability of error ε̃k and a probability of success of 1 − ε̃k. As
ε̃ < 1, this process effectively reduces the probability of error and can be used
to increase the probability of success of the algorithm to a number arbitrarily
close to 1. Indeed, we can always choose k such that 1− ε̃k = 1− δ, where δ is
the target error probability for the quantum algorithm. Explicitly:

k =
log(δ)

log(ε̃)
(8)
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which is constant as long as δ and ε̃ are constants, so iterating the algorithm k
times will not change its complexity. As we will see in the next section, how-
ever, the total algorithmic error that emerges from error-correction procedures
is not a constant; rather it depends on the scaling variable, i.e., the number of
qubits and gates involved in the implementation of the quantum algorithm. As
a consequence, this dependency affects the overal complexity.

3 Error Probability Analysis

Suppose we have a simple quantum algorithm that requires of a single gate Û that
is applied m times to a given quantum state. Also, we assume that the gate has
a constant probability of failing, ε, and in such a case it produces the operation
Ûf . This error may be due to (1) a faulty compiled design that performs the
wrong operation, (2) higher order errors left after error correction, or (3) the
approximate implementation of the gate using a finite set of elementary gates.

The effect of this operation on a general quantum state ρ(0) can be described
mathematically in its Kraus representation as:

ρ(1) = (1− ε) Ûρ(0)Û† + ε Ûfρ
(0)Û†f (9)

and the second iteration of the algorithm will look like:

ρ(2) = (1− ε) Ûρ(1)Û† + ε Ûfρ
(1)Û†f

= (1− ε)2 Û Ûρ(0)Û†Û† + ε (1− ε) Û Ûfρ(0)Û†f Û†

+ ε (1− ε) Ûf Ûρ(0)Û†Û†f + ε2 Ûf Ûfρ
(0)Û†f Û

†
f (10)

Thus, with probability (1− ε)2 there will be no faults; with probability 2ε(1− ε)
there will be exactly one fault; and with probability ε2 there will be two faults.

After m iterations the quantum algorithm produces the mixed state:

ρ(m) = (1− ε) Ûρ(m−1)Û† + ε Ûfρ
(m−1)Û†f

= (1− ε)m Ûmρ(0)Û†m + ... (11)

Define P (j) to be the probability that after m iterations the algorithm is com-
pleted with j errors:

P (0) = (1− ε)m

P (1) = (1− ε)m−1 ε m

... ...

P (j) = (1− ε)m−j εj
(
m

j

)

... ...

P (m) = εm (12)
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which clearly satisfies:
m∑

i=0

P (i) = 1 (13)

Then Perr, the probability that after m iterations the algorithm will be com-
pleted using at least one faulty gate, is given by:

Perr ≡
m∑

i=1

P (i) = 1− (1− ε)m (14)

where it is clear that the probability of algorithmic error not only depends on
the net failure probability ε but also on m.

Note that if we expand Perr and only consider the leading order term in m,
we get the original error model expressed in equation 2:

Perr ≈ 1− (1−mε) = mε (15)

where m ∝ O(s) and Perr ∝ ε̃. As a consequence, Perr grows montonically with
m and approaches 1. This functional dependency is to be expected: the more
times a faulty gate is used in a procedure, the more likely it is that there will
be a failure. Furthermore, in most algorithms of interst m is a function that
grows with n, the number of qubits involved in the algorithm, so Perr goes to
1 for any constant ε. Therefore, if a quantum algorithm has an intrinsic success
probability of P = 1 − δ using noiseless gates then the probability of success
with noisy gates will be Pf = 1− δf with δ < δf .

As has been discussed, however, the algorithm can be iterated to increase
the probability of success to satisfy any desired threshold. For example, after k
runs of the algorithm the probability of at least one failed operation becomes:

(Perr)
k

= (1− (1− ε)m)
k

(16)

where k can be chosen to satisfy:

(Perr)
k ≈ δ (17)

for 0 < δ < 1. The desired value of k is then:

k ≈ log δ

log (1− (1− ε)m)
(18)

For large m (large n limit) we have:

(1− ε)m � 1. (19)

Using the small limit approximation:

log (1− x) ≈ −x (20)
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the result for large m is:

k ≈ log δ

log (1− (1− ε)m)

≈ log δ

− (1− ε)m

≈ − log δ ×
(

1

1− ε

)m
(21)

Thus, the number of iterations of the algorithm required to mitigate the effect
of noisy gates grows exponentially. This result is independent of the value of ε,
which has been considered as an arbitrarily small, but constant, value. The only
way to reduce the number of iterations is to reduce the value of ε, e.g., with
more layers of error correction. However, the complexity of the overall algorithm
must reflect the complexity of the extra error correction.

As an example, consider Grover’s algorithm [10]. This amplitude amplifica-
tion algorithm uses a quantum state of O(n) qubits to search for an item in a
dataset of size N = 2n. The algorithm requires O(

√
N) iterations of the Grover

operator G, which is given by:

G = D ×O (22)

where O is an oracle and D the inverse around the mean operator[11]. We assume
that both operators can be implemented with O(n) elementary gates from a
universal set of quantum gates. Therefore, we can make the following estimation:

m = O(n× 2n/2) = O(
√
N logN) (23)

Then:

k ≈ − log δ ×
(

1

1− ε

)n 2n/2

=⇒ k = O
(
a
√
N logN

)
(24)

where:

a ≡ 1

1− ε > 1 (25)

As a consequence, the overall complexity of Grover’s algorithm is:

Grover = O
(√

N × k
)
≈ O

(√
N × a

√
N logN

)
(26)

Figure 1 shows the scaling implications of this result.
If the probability of error per gate, ε, is indeed very small, then:

k

− log δ
≈
(

1

1− ε

)m
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Fig. 1. Plots of
√
N and a

√
N logN for N ≈ 107 and ε = 0.0001.

≈ (1 + ε)
m

=
m∑

r=0

(
m

r

)
εr

= 1 +mε+ ... (27)

Thus, unless ε is identically zero, k will depend on m and therefore N .
If m ∝

√
N logN , then:

k = O
(√

N logN
)

(28)

and the overall complexity of Grover’s algorithm is:

Grover = O
(√

N ×
√
N logN

)
= O (N logN) (29)

This implies that the efficient theoretical complexity of Grover’s algrorithm is
undermined by any constant noise process, i.e., nonzero value ε independent of
N .

4 Error Scaling and Circuit Complexity

The problem posed by a constant probability of error per gate is that errors
multiply with each iteration of the algorithm and thus will grow without bound.
The only way to limit this error growth is to increase the number of layers of
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quantum error correction so that the probability of success for the overall algo-
rithm is fixed as N increases. However, this means that the amount of performed
error correction must increase with N because the effective value of ε must de-
crease as a function of N , which we will denote as ε(N). If the complexity of
increasing error correction is comparable to that of the uncorrected error rate,
then nothing is achieved. In this section we will show that this is not the case.

The goal is to define ε(N) so that the number of iterations is constant. That
is:

k ≈ − log δ ×
(

1

1− ε

)m
= O(1) (30)

Letting ε = ε(N) (because m(N) replaces m) gives:

ε(N) = 1− (− log δ)
1/m(N)

(31)

with m(N) expressed as:

m(N) =
∑

m̃i(N)s̃i(N) (32)

where s̃i(N) is the number of gates of type i that appear in the quantum circuit
and m̃i(N) is the number of times that these gates are iterated during the
quantum algorithm. In the case of Grover’s algorithm these definitions lead to:

ε(N) ≈ 1− (− log δ)
1/O(

√
N logN)

(33)

In light of this analysis we can generalize the threshold theorem. Specifically, we
require that:

(cp)
2h

c
≤ ε(N) (34)

where ε(N) now takes the form:

ε(N) = 1− (− log δ)
1/m(N)

(35)

which leads to:

(cp)
2h

c
+ (− log δ)

1/m(N) ≤ 1 (36)

This expression can be used to determine the optimal number of iterations
of quantum error correction layers that are required to avoid a penalty on the
algorithmic complexity. That is, we require that:

(cp)
2h̃(N)

c
≈ ε(N)

=⇒ h̃(N) ≈ log

(
log(1/cε(N))

log(1/cp)

)
(37)

As a consequence, h̃(N) scales as:

log (log(1/ε(N))) (38)
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in contrast to h̃o(N) = log(log(s(N))) derived earlier. The difference in the
number of iterations is not a simple multiplicative constant, as h̃(N) and h̃o(N)
have completely different functional dependencies. In particular:

h̃(N)

h̃o(N)
−→∞ as N −→∞ (39)

We can determine the number of gates required to satisfy the fault tolerance
inequality:

O (s× logr(1/ε(N))) (40)

We are interested in the overhead factor on the number of gates:

log


 1

1−
(
− log δ
ξ

)1/m(N)


 (41)

and how it compares to the original case:

log (s(N)) (42)

Our complexity is poly-logarithmic rather than strictly logarithmic, but this
overhead is unavoidable because:

log
(

1
ε(N)

)

log (s(N))
−→∞ as N −→∞ (43)

similar to the scaling of the number of layers of the error correction encoding
h̃(N) and h̃o(N).

5 The Classical Case

We have shown that a nonzero probability of error for each gate impacts the
complexities derived under the (implicit) assumption of noiseless gates. It may
reasonably be questioned whether the same analysis similarly impacts classical
algorithms. To show why it does not we examine the case of classical linear
search and contrast its robustness to gate noise with that of Grover’s quantum
search algorithm.

As we did in the quantum case, we assume that the classical search oracle
produces errors with probability ε. Most of the analysis remains the same, with
the exception that k ≈ O (N), and the overall complexity becomes:

Classical Brute Force ≈ O (N ×N) ≈ O
(
N2
)

(44)

Interestingly, under the exact same assumptions of uncorrectable faulty gates
with a small error probability, Grover’s algorithm provides a quadratic improve-
ment in scaling. Within the classical framework, however, there is additional
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flexibility to address errors so that noisy gates can be used to simulate noiseless
ones without impacting algorithmic complexity.

Consider the case of a classical brute-force (CBF) search of a dataset S of size
N using an oracle O, where each application has a probability ε of producing an
errored result, i.e., returning a ‘0’ for the correct solution or a ‘1’ for an incorrect
solution.

Our algorithm is as follows: for each element Si of our dataset we evaluate
O(Si). If Si is assessed to be a solution then we re-evaluate O(Si) m times to
ensure that it is in fact a solution. The probability that a spurious solution passes
all m tests is εm, so the probability that Si is a true solution is approximately4

1− εm.
The expected number of spurious solutions that will be initially assessed as

actual solutions is ε×N , so O(m× ε×N) re-evaluations will be performed, and
the complexity of a single execution of the algorithm becomes:

O((1 +m× ε)×N). (45)

If no solution is found then the entire iteration will have to be re-executed.
This will occur with probability ε – the case in which an error occurs when the
oracle is applied to the true solution. The probability that the entire iteration is
executed k times is εk. Including this multiplicative factor into the complexity
of Eqn.(1) gives an overall complexity of:

O((1 +m× ε)k ×N) (46)

If we want to fix the probability p of finding the correct solution for any value of
N , we need to ensure that the probability of returning a spurious solution (εm)
and the probability of failing to recognized the correct solution (εk) are both less
than 1− p. This means that k and m must be less than α = log(1− p)/ log(ε),
which is a constant for fixed p and ε. Substituting α for m and k into the
overall complexity given in Equation 46 shows that classical brute force has
O(N) complexity in the presence of uncorrected constant errors.

The difference between the classical and quantum models is that in classical
search each computational step determines if an element is a solution or not. In
the quantum case, by contrast, the no-cloning theorem precludes the ability to
re-run a particular step in the algorithm. The poly-logarithmic space increase
needed in the quantum case cannot generally be ignored because many classical
algorithms admit a nonlinear space/time complexity tradeoff, i.e., a classical
algorithm may be able to reduce its associated run-time complexity if given the
same poly-logarithmic factor increase in space.

6 Conclusions

In this paper we have shown the following:

4 Errors may occur during the m iterations, but their contribution to the overall
analysis is negligible.

262



– Even if it is arbitrarily small, a constant uncorrected error probability will
undermine the complexity advantages of most (if not all) quantum algo-
rithms. To mitigate this effect it is necessary to apply error correction to
scale the error level according to the scaling parameters of the algorithm.

– This scaling of the error probability can be used to compute the maximum
error probability allowed at a given scale, the optimal number of layers of
the error correction encoding, and the overhead in circuit size that results
from fault tolerant procedures.

– In the classical domain it is possible to have uncorrected constant error
probabilities that do not affect algorithmic complexity. This is not the case
in the quantum domain because of the restrictions imposed by the cloning
theorem.

– The error scaling behavior implies a more demanding model of fault toler-
ant quantum computing. The required number of layers of error correction
encoding and the overhead in the size of the circuit are larger than those
previously reported in the literature.

From a practical point of view, these results provide useful formulas for the
optimal number of layers of quantum error correction encoding determined by
the specific algorithm algorithm that needs to be implemented in noisy hardware.
This is particularly useful for the design of smart compilers able to dynamically
allocate the the optimal amount of error correction for a given program. In these
circumstances, trade-offs between logical quantum gates and time may become
important.
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Computation and the Illusion of Physical Reality
(An Informal Presentation to Physics and Computation 2010)
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Abstract. The role of theoretical physics is to investigate, represent and
thereby explain the nature of physical reality. We claim that this goal is
unattainable using current standard mathematical models of physics, not
just for practical reasons, but as a matter of logical necessity. Standard
models of quantum theory and relativistic spacetime are logically equiv-
alent to models in which the nature of classically observable motions is
a form of necessary illusion. Consequently, no standard deductions as to
the nature of space, time and motion can be deemed sound.

Keywords: physics and computation, formal models of physics, arrow
of time, interpretations of quantum mechanics, first-order relativity the-
ory

1 Manifesto

All mathematical theories of physics (even quantum theories) ultimately depend
for their validation upon classical observations. This is inevitable, since no mat-
ter what form a physical apparatus may take, the observations made using that
apparatus must ultimately be conveyed to and interpreted by human beings us-
ing biological sensory systems that have evolved, for better or worse, to interpret
the world directly in classical terms.

Being classical, these observations all involve a physical instantiation of mo-
tion. Whether it be the movement of a needle on a voltmeter, the creation by
subatomic particle of a path in a cloud chamber, the collision of a photon with
an observer’s eye, or the arrival of salt molecules on a subject’s tongue, classical
observation cannot exist in the absence of motion.

Ultimately, therefore, current mathematical theories of physics are really only
theories of observable classical motion. Those theories which correctly predict
how entities will move in an experimental system survive, while those which fail
to do so are rejected. The underlying theories need not themselves be classical,
but the predictions they generate must be expressed in classical terms if they
are to be humanly testable.

? We are grateful to the EPSRC for their support (EPSRC Hypercomputation Network
(HyperNet), grant reference EP/E064183/1).
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If it can be proven of two distinct physical theories that they necessarily
generate the same physical predictions under all applicable circumstances, those
theories either stand or fall together (we shall call such theories equivalent). If
one represents an unfalsified description of physical reality, then so does the
other. If one is invalidated by experimental observations, then so is the other.

Suppose, then, that M1 and M2 are equivalent theories of physics, and that
M1 incorporates axiomatically some independent assumption A1 concerning the
nature of physical motion, while M2 incorporates another such assumption A2.
If the assumptions A1 and A2 contradict one another in physical terms, then
neither assumption can be deemed intrinsically sound, since all experiments
which would validate A1 by validating M1 would also validate A2 by validating
M2. While both assumptions remain meaningful components of their respective
theories, any claim for the ultimate physicality of one as opposed to the other
must be considered unscientific as long as both theories remain unfalsified by
experimental data.

In such circumstances, the apparent validity of two contradictory theories
may be seen as pointing to an incompleteness in our understanding of physical
reality. Either the notion of physical motion is logically irrelevant, so that both
A1 and A2 may simply be dispensed with, or else (which is essentially the same
statement) both A1 and A2 can be deduced as theorems by adding some deeper
axiomatization of motion to the theories M ′

1 = M1 \ A1 and M ′
2 = M2 \ A2,

respectively.

2 Argument

We present two arguments that no assumption can be deemed sound, given cur-
rently accepted mathematizations of physics, that purports to characterise the
‘true’ nature of physical motion, whether in space or time, as either discrete or
continuous. The nature of motion – and hence of humanly observable reality –
must run deeper than this: physical reality, as currently understood, supports
equivalent theories incorporating discrete and continuous representations of mo-
tion, and so motion cannot itself meaningfully be constrained to either condition.
We conclude that all observable motion may be deemed an artefact of our mod-
els, whence physical reality as we currently formulate it is an unscientific illusion.
In truth, we understand nothing.

2.1 The continuity/discontinuity argument

In [Stannett(2009a)] we considered the case of quantum theory. We showed that
Feynman’s path-integral formulation of quantum theory is logically equivalent
to a computation-based theory in which particles jump at random from one
spacetime location to another, provided the action associated with each such
‘hop’ is set equal to the classical action for the same relocation (or that of the
time-reversed equivalent anti-particle in the case of hops taking the particle back-
wards through time). We claim that Feynman’s theory (which is itself equivalent
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to Schrödinger’s) assumes that time’s arrow is forward-pointing, and that basic
particle trajectories are continuous paths drawn on a spacetime that is itself a
continuum. The hop-based model also assumes that spacetime is a continuum,
but assumes that motion is discrete and that time has no arrow. As explained
in Sec. 1, it follows that neither continuity nor discreteness of motion can safely
be deemed fundamentally valid, and that any attempt to assert the physicality
of one above the other is inherently unscientific. In particular, therefore

– the classical contention (inherent in Newton’s laws, for example) that parti-
cles move forward continuously through time along continuous spatial paths
cannot be supported. We can instead regard both the arrow of time, and
the associated concept of continuous motion as a form of ‘necessary illusion’,
forced upon classical observers even within the inherently discrete hop-based
theory.

2.2 The measurement-field argument

In [Stannett(2009b)] we looked at first-order models of relativity theory, and
noted that there is no obvious reason why the number field Q used to record
measurements (for example, of mass) should be the same as the field R used
to coordinatize spacetime, though we would expect Q to be a subfield of R. By
adapting the argument in [Stannett(2009a)], we argued that the ‘hops’ used to
generate the illusion of continuous classical motion can be chosen so that any
particle whose location is coordinatized entirely by Q is constrained to remain
absolutely fixed in space and time. Since all observations involve such objects,
this tells us that no ‘truly observable’ entity in this theory is capable of motion.
Nonetheless, we again obtain the ‘necessary illusion’ of classical motion along
continuous paths. It follows that

– the classical contention that objects can move at all can also be regarded as
a necessary illusion caused in part by our incorrectly identifying the field Q
of physically measurable values with the field R of idealised coordinates.

2.3 Conclusion

Since no reliance can be placed on the classical physicality of motion, and since
current physical theories require the observation of such motions for their vali-
dation, no current physical theory can be considered to have explanatory power.
We understand and can explain nothing about the physical world.
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Abstract. Discussions on causality abound, but rare are the attempts
at precise definition of what is meant. The reason might be that the con-
cept in itself is intrinsically pluriform, but even then theories enclosing
some kind of causation should exhibit certain common structural char-
acteristics, otherwise the use of the common term would be absolutely
pointless. I show that a fairly straightforward categorical characterisation
of causation is possible when one takes both the history of the concept
and Meyerson’s careful analysis of the relation between causation and
time into account. Historically it has been seen (by Aristotle) that a
causal relation between events is never simply straightforward, but al-
ways implies — explicitly or not — a connection between a universal
(global) and a particular (local) level. This is why the idea of cause can
be linked to the idea of lawfulness. But there is a difference between
a law and a cause because of the asymmetry between space and time:
space is actual everywhere but time only at this moment. Laws define
the identical, but identity as well is only unproblematic at this moment.
Meyerson shows that causality therefore somehow implies the conserva-
tion of identity through time. The idea of conservation is essential here.
Now when causal connections are interpreted as order relations (as is
the case in, e.g., relativistic theories), then causation appears as the Ga-
lois adjoint to identity, and causality will be aequivalent to the idea of
physical law. This allows to formally characterise causality in this type
of theories, without having to “explain” it any further. Given the functo-
riality of the derivative and the interconnection between symmetry and
conservation, this approach might be generalisable to other physically
viable notions of causation through the use of Noether’s Theorem.
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